
Metacomputing and Resource Allocation
on the World Wide Web

by

Mehmet Karaul

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 1998

Approved:

Zvi M. Kedem

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 1998 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Metacomputing and Resource Allocation on the World Wide Web

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

142

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

c© Mehmet Karaul

All Rights Reserved, 1998

To Helen and Zachary

iv

Acknowledgements

I want to thank Zvi for being a great advisor. He always puts his students first, and

he has given me all the support I needed throughout my studies. I am grateful to

him for teaching me to distinguish between important details I should pay attention

to and unnecessary cludder which I should dispose of; he pushed the right buttons

to make me realize this over and over. I hope he will remain my advisor, even after

I graduate.

And I want thank Yannis Korilis for giving me the opportunity to work with

him on a great project. An important part of this dissertation represents the

work we accomplished together at Bell Laboratories. I have no doubt that we will

continue working together on this and other projects in future.

Others deserving my thanks for various reasons include: Arash Baratloo, Partha

Dasgupta, Arthur Goldberg, Ayal Itzkovitz, Holger Karl, Ariel Orda, Ken Perlin,

and Peter Wyckoff.

Then, there are the most important people in my life. My wife, Helen, who

v

put up with my working through numerous nights and weekends with remarkable

patience and support, especially the last few months. And my son, Zachary, who,

I hope, will forgive me for missing out on so many days of his young life—once he

is old enough to understand.

This research was sponsored by the Defense Advanced Research Projects

Agency and Rome Laboratory, Air Force Materiel Command, USAF, under

agreement number F30602-96-1-0320; and by the National Science Foundation

under grant number CCR-94-11590. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes notwithstanding

any copyright annotation thereon. The views and conclusions contained herein

are those of the author and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or implied, of the Defense

Advanced Research Projects Agency, Rome Laboratory, or the U.S. Government.

vi

Contents

Dedication iv

Acknowledgements v

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Resource Allocation . 2

1.3 Metacomputing on the Web . 5

1.4 Network Computing with Java Applets 7

1.5 Outline of the Dissertation . 9

2 Resource Allocation 10

2.1 Introduction . 10

2.2 Design . 14

vii

2.3 Name Resolution . 16

2.3.1 Replica Address Cache . 16

2.3.2 Propagation of Addresses 19

2.4 Routing Strategies . 21

2.5 Load Distribution . 24

2.5.1 Pricing Strategies . 26

2.5.2 Adaptive Algorithm to Determine Weight Factors 27

2.6 Implementation . 30

2.7 Experiments . 34

2.7.1 Minimizing End-To-End Delays 34

2.7.2 Dynamic Performance Changes 36

2.7.3 Changes in Server Pool . 38

2.7.4 Enforcing a Target Load Distribution 38

2.8 Related Work . 44

2.9 Conclusions . 46

3 Metacomputing on the Web 48

3.1 Introduction . 48

3.2 Virtual Machine . 53

3.2.1 Programming Model . 55

3.2.2 Distributed Shared Memory Semantics 56

viii

3.3 Syntax and Semantics of Charlotte Programs 58

3.4 Eager Scheduling and TIES . 63

3.5 Runtime System . 65

3.5.1 An Overview of the Execution 67

3.5.2 A Sample Execution . 70

3.6 Matching Workers with Computations 74

3.7 Distributed Shared Memory . 77

3.7.1 Existing Techniques . 77

3.7.2 Implementation . 79

3.8 Experiments . 82

3.8.1 Setup . 82

3.8.2 Results . 86

3.9 Related Work . 90

3.10 Conclusion . 93

4 Network Computing with Java Applets 94

4.1 Introduction . 94

4.2 Related Work . 97

4.2.1 Parallel Computing . 97

4.2.2 Collaborative Applications 99

4.3 Design . 100

ix

4.3.1 Registration and Lookup . 102

4.3.2 Arbitrary Origin of Applets 105

4.4 Directory Service . 105

4.4.1 Registration . 107

4.4.2 Lookup . 108

4.4.3 Directory Service and Java RMI 111

4.5 Class Server . 112

4.5.1 Implementation . 113

4.5.2 KnittingFactory and Charlotte 114

4.6 Conclusions . 115

5 Conclusions 117

Bibliography 119

x

List of Figures

2.1 One-to-many mapping from hostname to IP numbers. 16

2.2 A distributed Web site with logical address and IP numbers. . . . 17

2.3 HTTP Request message with Timestamp header. 18

2.4 HTTP Response message with Timestamp/Addresses headers. . . 19

2.5 Extended mapping with port numbers and relative path offsets. . . 20

2.6 WebSeAl client agent and server agent. 29

2.7 Request distribution in a dynamically changing environment. . . . 37

2.8 Price and load changes with θ = 0.25/f∗. 39

2.9 Price and load changes with θ = 0.5/f∗. 40

2.10 Price and load changes with θ = 1.0/f∗. 41

2.11 Price and load changes with θ = 2.0/f∗. 42

2.12 Price and load changes with θ = 4.0/f∗. 43

3.1 Perfect virtual machine vs. unreliable execution environment. . . . 54

3.2 Charlotte’s execution model. 56

xi

3.3 Matrix multiplication in Charlotte. 61

3.4 Charlotte matrix multiplication code: MatrixMult.java. 62

3.5 Charlotte’s runtime environment. 66

3.6 Eager scheduling example. 68

3.7 Sample list of active Charlotte programs. 75

3.8 Distributed objects in Charlotte. 80

3.9 Profiles of machines available for the experiments. 84

3.10 Scalability experiment of a Charlotte Ising model program. 87

3.11 Load balancing experiment of a Charlotte Ising model program. . . 89

4.1 Architecture of typical Web-based parallel/collaborative systems. . 98

4.2 Layered design of KnittingFactory. 101

4.3 The main page of a KnittingFactory registry. 106

xii

Chapter 1

Introduction

1.1 Motivation

Load balancing, fault-tolerance, and scalability play an important role in dis-

tributed computing. They are of interest for many distributed systems problems as

well as for many problems in other areas. Collaborative applications, for example,

need to provide some level of fault tolerance to allow for failures of participants’

machines. In networking, as another example, techniques are needed to balance

the load offered to network links and to tolerate machine failures. In this disserta-

tion, I will present three projects with different goals to which all or some of these

issues are relevant, and present different ways to address them.

My main focus will be on the World Wide Web, but the techniques presented

here are not restricted to it. The Web can be viewed as a large, unreliable, dis-

1

tributed platform composed of different machines with different speeds which may

slow down, speed up, and crash-fail at any time, and networks with different ca-

pacities which may get congested and partitioned. All these factors make the Web

a very challenging environment.

The projects I present range from resource allocation, to parallel computing,

to infrastructure support for collaborative applications. Following are summaries

of these projects.

1.2 Resource Allocation

With the rapid growth of the Web, clients attempting to access some popular Web

sites are experiencing slow response times due to server load and network conges-

tion. Many sites have replaced the single server with a cluster of replicated servers

to partition server load. To address the issue of network congestion, some sites

have chosen to geographically disperse the replicated servers—this approach has

become popular with software archives which have mirror sites, typically on several

continents. Such a distributed architecture may result in increased availability of

the service in times of network congestion and partial unavailability, and increase

performance by taking advantage of “proximity” between clients and servers.

Distributed Web sites require means to control the load distribution over the

replica pool. Designing an allocation strategy for a distributed Web site which does

2

not sacrifice any of its benefits is a challenging task. Any successful solution must

address the following issues: geographic distribution, scalability, load balancing,

fault transparency, dynamic changes in the server pool, transparent name resolving,

flexibility, and legacy code and standards. To address these issues, I designed and

implemented WebSeAl [34].

Most existing approaches can be classified into two categories: (1) DNS based

approaches which generally suffer from load imbalance due to caching of map-

pings, and (2) server side approaches which do not address geographic distribution

appropriately. WebSeAl is closer in nature to the work presented in [63]. Unlike

traditional approaches, it pushes the server allocation functionality onto the clients.

A client agent module located at the client side and a server agent module at each

replicated server implement WebSeAl’s functionality. This functionality should

ideally be included in Web servers and browsers/proxies. The current WebSeAl

prototype provides a client agent and a server agent, realized as separate processes,

to implement the required functionality without requiring any changes to existing

software.

Each client maintains a cache of logical hostnames and IP numbers to perform

one-to-many mappings; servers include this address information in their responses.

To create an initial entry in its cache, the client uses standard DNS name resolving

and sends the request to the corresponding server. To keep its cache up-to-date,

3

the client includes a timestamp in its requests which indicates the state of the

currently cached mapping for any given distributed server; servers inspect this

timestamp and include in the response address updates only.

The client strives to minimize the end-to-end delay of each HTTP request. It

intercepts each request, makes routing decisions based on the response times of

each replicated server, and forwards the request to the selected server. It uses the

delays of previous messages to compute estimates and avoids any probes or control

messages. WebSeAl’s routing strategy favors the more responsive servers while

using the slower ones occasionally to detect potentially improved servers.

WebSeAl uses pricing mechanisms to provide means for service providers to ef-

fectively control the utilization of individual servers. Building on theoretical work

based on game theory, it uses cost functions to make the distributed clients im-

plement routing strategies which lead to any desired load distribution. For this,

clients base their routing decisions not only on performance statistics, but also

on the service cost for each server. The underlying methodology is motivated

by recent analytical studies in the area of networking which have shown that a

network/service provider can enforce any desired load distribution by means of

appropriate pricing strategies even if clients make their routing decisions noncoop-

eratively [44, 45].

I believe pushing the routing functionality onto the clients scales well and results

4

in increased performance in many cases. I have conducted a series of experiments

using Web servers on six continents and the results show that WebSeAl can deliver

significant performance gains while imposing little overhead [34].

This is joint work with Yannis A. Korilis and Ariel Orda.

1.3 Metacomputing on the Web

The utilization of local area networks as a parallel computing platform has been

popular for many years and several research projects such as PVM [57], MPI [28],

and Calypso [4] have aimed at this goal. Based on their success, and as an evolu-

tionary step, attempts have been made to extend existing approaches from local

area networks to wide area networks such as the Web, with the promise of tap-

ping into a larger resource of mostly idle machines. The Web, in conjunction with

Java, has greatly increased its potential of being used as an inexpensive and conve-

nient metacomputing resource, making it an ideal candidate for compute-intensive

applications.

Utilizing the Web as a metacomputing resource introduces new challenges dif-

ferent from those that exist in local area networks. The Web invalidates many

of the assumptions made to build parallel environments for workstation clusters.

For example, there is no shared file system, no one has accounts on all connected

machines, and it is not a homogeneous system. To effectively utilize the Web as

5

a metacomputing resource, one needs to address various important issues such as

programmability, heterogeneity, portability, security, dynamic execution environ-

ment, and scalability. My work on Charlotte [7] addresses these issues by offering

a unified programming and execution environment for the Web. Its main contri-

butions are:

• Charlotte is the first environment that allows any user on the Web, using

any Java-capable browser to participate in a parallel computation, simply by

clicking on a link. It leverages the ability of browsers to download and exe-

cute remote applets to overcome the need for a shared file system or remote

accounts.

• A new technique for providing a distributed shared memory abstraction with-

out relying on operating system or compiler support. It implements a shared

name space at the language level without requiring operating system support

(not possible with Java) or modifying compilers or the JVM (not desirable).

• Charlotte’s runtime system provides load balancing and fault tolerance to

deal with the dynamics of the Web by using two integrated techniques, eager

scheduling and two-phase idempotent execution strategy .

• Charlotte decouples the programming model from the execution environment.

Its programming environment can conceptually be divided into (1) a virtual

6

machine model which provides a reliable shared memory machine abstraction

to the programmer and isolates the program from the execution environment,

and (2) a runtime system which realizes this model on a set of unpredictable,

dynamically changing, and faulty machines.

• Charlotte is the first programming environment for parallel computing using

a secure language. It is built on top of Java without any native code and

provides the same level of security as Java.

There have been several projects that focus on Java-based parallel computing.

Unfortunately, most fail to take advantage of Web browsers’ ability to download

and execute applets in a secure fashion. This is a crucial requirement if a system is

to entice users to donate their resources. Charlotte was the first system to achieve

this. It was followed by other similar systems like Javelin [14], Bayanihan [54],

and Ninflet [58], strengthening Charlotte’s original argument that the Web is an

attractive metacomputing resource.

This is joint work with Arash Baratloo, Zvi M. Kedem, and Peter Wyckoff.

1.4 Network Computing with Java Applets

While working with Charlotte, some of its limitations became clear. A deeper

look revealed that other Web-based parallel computing environments and many

7

collaborative applications, such as shared whiteboards and editors, have similar

shortcomings. My work on KnittingFactory [6, 5] addresses these issues and pro-

vides infrastructure support to build such applications without the aforementioned

limitations.

KnittingFactory focuses on applications composed of Java applets and designed

to run within Web browsers. As a result of restrictions put on applets, specifically

the host-of-origin policy, the architectures of many existing systems have the fol-

lowing characteristics: (1) a stand-alone application running on the same host as

an HTTP server; and (2) users on the Internet joining a stand-alone application by

loading an applet using an a priori known URL and executing it within a browser.

In an ideal situation, (1) the application should not be tied to an external HTTP

server and should be allowed to execute anywhere on a network; and (2) users

should not be required to have a priori knowledge of the URL and should be able

to locate these applications in a seamless fashion via browsers. KnittingFactory is

an infrastructure for building such systems. It provides two integrated services:

• KF Directory Service, a distributed name service to assist users in finding

networked applications on unknown hosts. It allows users to find such appli-

cations on the Internet by performing a lookup at any site offering a KF Di-

rectory Service. It works fully within browsers and uses JavaScript.

8

• KF Class Server , an embedded class server to eliminate the need of external

HTTP servers. It provides a light-weight solution to allow users to initiate a

distributed effort on any host.

This is joint work with Arash Baratloo, Holger Karl, and Zvi M. Kedem.

1.5 Outline of the Dissertation

This dissertation is organized as follows: I will first present WebSeAl and discuss

how it addresses scalability, load balancing, and fault masking in Chapter 2. Next

in Chapter 3, I will describe Charlotte and the techniques it uses to deal with

machines of different speeds and crash-failed machines. In Chapter 4, I will present

an infrastructure Web-based applications which contains various aspects relating

to scalability and fault masking.

9

Chapter 2

Resource Allocation

2.1 Introduction

The rapid growth of the World Wide Web has led to a steady increase of client

requests to many popular Web sites. Both, overloaded servers and network con-

gestion contribute to slow response times of such sites. It may not be cost-effective

to upgrade the server machine with a more powerful one, especially when incre-

mental scalability is desired. Instead, most sites opt to replace the single server

with a cluster of replicated servers [50, 51]. Although this may solve the problem

of overloaded servers, it does not address network congestion. Some sites choose to

geographically distribute the replicated servers—this approach has become popu-

lar with software archives (e.g. [61]) which have mirror sites, typically on several

continents. Such a distributed architecture may result in increased availability of

10

the service in times of network congestion and partial unavailability, and it may

increase performance by taking advantage of proximity between clients and servers.

Typically, the service content is replicated or a distributed file system [30, 55] is

used.

Service providers using such a distributed architecture require means to ef-

fectively control the usage of individual replicas. More specifically, they require

means to route1 requests in a way such that the resulting load distribution coin-

cides with the target load distribution the service provider seeks. A target load

distribution might be to partition the incoming requests evenly among the replicas;

or the service provider might want to temporarily discourage clients from using a

certain replica, for maintenance reasons or to perform other site specific tasks, for

example.

Currently, many distributed Web sites require the user to manually select a

server out of a list of replicas. This is inconvenient for the user, and a decision

to use a certain server might result in poor performance depending on network

conditions and the load of the selected server. Furthermore, this approach does

not allow service providers to control the load distribution among the replicas.

Designing a transparent allocation strategy for a distributed Web site which

does not sacrifice any of the benefits of such a distributed architecture is a chal-
1Throughout this Chapter, the term routing refers to the assignment of requests to replicas and is not

to be confused with routing within the network.

11

lenging task. A successful solution must meet several requirements:

• Load Balancing: Service providers should be able to effectively control the

utilization of individual servers.

• Geographic Distribution: Network delays between a client and individual

servers of a distributed service might differ significantly. Server allocation

should take advantage of this while still accommodating dynamic changes in

network performance and server load.

• Scalability: Server allocation should gracefully scale with the increasing

number of clients.

• Transparent Name Resolving: Popular Web sites have well publicized

server names and require a transparent mapping to replicated servers.

• Dynamic Changes in Server Pool: Addition, removal, and migration of

servers should be supported, and changes should be reflected as quickly as

possible.

• Fault Transparency: Unresponsive machines should be detected and re-

quests transparently redirected to other replicas. Also, previously unrespon-

sible machines which become available again should be incorporated quickly.

• Flexibility: Different users may have different objectives when accessing

Web sites, requiring support for customized strategies.

12

• Legacy Code and Standards: It should not require any changes to existing

client or server code and should conform to existing standards.

A comprehensive solution for allocation of distributed Web servers must address

all these factors. I am not aware of any system which achieves this. In this Chapter,

I present a system called WebSeAl which addresses these issues.

The research leading to WebSeAl is based on theoretical work where provable

methods for controlling network load using pricing mechanisms were developed [44,

45]. It was shown that even with noncooperative clients (in a fully distributed,

and therefore scalable fashion), the network load can be controlled effectively. The

work presented here applies these techniques to provide scalable and controllable

load balancing for distributed Web servers.

The remainder of this Chapter is structured as follows. I will first present the

decentralized design of WebSeAl and then describe how logical names are resolved.

Sections 2.4 and 2.5 discuss how WebSeAl can enforce any desired load distribution

over the server pool. In Section 2.6, implementation issues regarding the prototype

I designed and implemented are addressed. This will be followed by experiments

and concluding remarks.

13

2.2 Design

A simple solution to enforce a load distribution over a set of replicated servers is to

make sure that all requests pass through some sort of a central dispatcher, which

directs individual requests to different replicas depending on the target load distri-

bution. Since this central dispatcher has global knowledge, ensuring a specific load

distribution is not difficult. However, such an approach raises scalability concerns.

Also, it does not address the issue of geographic distribution appropriately; a client

will not be able to take advantage of a close-by replica if the central dispatcher is

located far away since each request needs to pass through the dispatcher.

WebSeAl uses a decentralized approach to address the issue of scalability and

geographic distribution. In WebSeAl, it is actually the client who makes routing

decisions. At times, I will refer to such clients as noncooperative. There is no

central entity which dispatches the requests. This fully distributed approach should

scale well with the number of clients, and it makes it possible for clients to take

advantage of geographic proximity, specifically, fast network connections between

the client and certain replicas.

The basic functionality at the client side can be described as follows:

• Clients make routing decisions.

• They maintain a cache of address information.

14

• They collect dynamic performance data (e.g. network conditions, server load,

and other site specific data).

• Clients base routing decisions on this data.

• They automatically redirect the request to an alternate server if the selected

server is not responsive.

Besides delivering the actual service, servers provide clients with address infor-

mation. They also communicate other site specific data which might be used to

control access to the server pool, to support charging for services, and so forth, as

will be discussed in Section 2.5.

With such a decentralized approach, the actual load distribution among the

server pool will solely depend on how clients make their routing decisions. There-

fore, the challenge is to make sure that clients implement routing strategies so

that the resulting load distribution coincides with the desired one. This is a much

harder problem compared to the centralized approach since each client has only

“partial knowledge”, and there is no entity which has global knowledge. I will dis-

cuss in Sections 2.4 and 2.5 how WebSeAl ensures that any target load distribution

can be enforced. Before addressing these issues, I will first describe how clients

find out about replicas.

15

www.yahoo.com

IP1

IP2

IP3

IP4

IP5

Figure 2.1: One-to-many mapping from hostname to IP numbers.

2.3 Name Resolution

A server is identified by a logical address in the form of a hostname. When a client

attempts to contact a server, the Domain Name Server (DNS) system transparently

resolves the hostname to an IP number, which is successively used to establish the

connection. To contact a distributed server in a transparent fashion, a one-to-many

mapping from the hostname to one of the IP numbers of the replicated machines

is needed. WebSeAl pushes this name resolving functionality onto the clients.

2.3.1 Replica Address Cache

As mentioned earlier, clients maintain a cache of replica address information. They

use this information to access a distributed Web site identified by a hostname,

e.g. www.yahoo.com. A mapping consists of the hostname and the IP numbers

of the replicas making up the distributed service. Using this information, clients

perform a one-to-many mapping from the public hostname to the IP numbers of

the individual replicas (see Figure 2.1).

16

WWW
IP3 IP4 IP5

IP1

IP2

(www.yahoo.com)

Figure 2.2: A distributed Web site with logical address and IP numbers.

When a client attempts to access a distributed server for which it does not have

a mapping cached, it uses standard DNS name resolving and contacts the server

at that hostname. This means that one of the replicas is known to the standard

DNS system by the logical address of the distributed Web site. More specifically,

a distributed Web site consists of a set of servers S1, . . . , Sn, each with its own IP

number IP1 . . . IPn (Figure 2.2). One of these servers is known to the standard DNS

system by the hostname of the distributed Web site. This server will successively

communicate the addresses of all replicas to the client (as will be discussed below).

Future requests to this distributed service use this information to perform one-to-

many mappings from the logical address to the individual hosts. The standard

DNS system is used only for bootstrapping—once a mapping for a logical address

is cached, the DNS system is not needed to access any of the replicas. The service

17

GET http://www.yahoo.com/index.html HTTP/1.0

Timestamp: Sun, 06 Nov 1994 08:49:37 GMT

...

Figure 2.3: HTTP Request message with Timestamp header.

will be accessible as long as at least one replica remains responsive.

Servers communicate address information to the clients. Each server is assumed

to have address information about all replicas—this information can be made avail-

able to individual replicas in the same way the service content is made available to

them. Servers include the addresses of the individual servers in the actual response

they generate. Clients extract these addresses from the response and update their

cache accordingly.

Clients need to retrieve the addresses of the servers only to create an initial entry

or to refresh their cache if the address information has changed in any way. To

avoid unnecessary transmission of address information, clients include a timestamp

in their requests which indicates the state of the currently cached mapping for

the given distributed server. This timestamp is provided by servers along with

the addresses. Upon receipt of a request, a server inspects this timestamp and

includes the addresses and the new timestamp in the response only if more up-

to-date address information is available. This is very similar in nature to the

18

HTTP/1.0 200 OK

Timestamp: Sun, 06 Nov 1994 08:49:37 GMT

Addresses: IP1 IP2 IP3 ...

...

Figure 2.4: HTTP Response message with Timestamp/Addresses headers.

If-modified-since header [9], which is used to avoid retrieving cached files which

have not been modified since a certain date.

2.3.2 Propagation of Addresses

HTTP allows application specific header fields and requires that all intermediaries

such as proxies or gateways conforming to HTTP ignore these and forward them

unchanged. This is used to piggyback timestamps and addresses in HTTP mes-

sages. WebSeAl introduces two new message headers: Timestamp and Addresses.

Clients use the first header to notify servers about the status of their cached ad-

dresses for the distributed server at hand (see Figure 2.3). Servers use both headers

to return a list of addresses and the timestamp at which this information was gen-

erated (see Figure 2.4).

The format of a Timestamp header is defined as follows:

Timestamp: HTTP-date

19

www.yahoo.com:80/

IP1:8888/

IP2:8080/yahoo

IP3:80/

Figure 2.5: Extended mapping with port numbers and relative path offsets.

HTTP-date is the standard date/time stamp format used on the Internet as

defined in [9].

The format of a Addresses header is defined as follows:

Addresses: IP-number-list

IP-number-list is the list of IP numbers separated by whitespaces.

Mapping a hostname to a set of IP numbers shares many similarities with DNS

based and server side approaches which will be described in Section 2.8. Notice

that these approaches require that the servers on all replicated hosts accept con-

nections at the same port. In addition, the directory structure must be identical on

each host. WebSeAl’s architecture relaxes these restrictions. The mapping from

hostname to IP numbers can easily be extended to a mapping from hostname and

port to IP number and port to accommodate the usage of different port numbers.

This requires that the address information included in responses be extended to

contain port numbers as well as hostnames. Path offsets can be accommodated

similarly (see Figure 2.5). For example, www.yahoo.com:80/ can be mapped to

122.140.128.40:8080/yahoo/. On the first host, the server is accepting connec-

20

tions at port 80 and the directory structure is rooted at /. On the second host,

the server accepts connections at port 8080 and the root directory is at /yahoo/.

Many mirror sites use different root directories and require a relative path offset.

This allows a single host to serve as a replica for multiple distributed Web sites.

2.4 Routing Strategies

As mentioned before, in WebSeAl it is the clients who make routing decisions.

When clients make routing decisions, the resulting load distribution over the server

pool will be solely the result of the routing strategies the clients implement. To be

able to control the resulting load distribution, mechanisms are needed to influence

the client side routing decisions. We use a pricing scheme to achieve this in Web-

SeAl. I will present the details in two steps: In this Section, I will assume that

the service provider does not attempt to enforce a specific load distribution, and

that the only objective for clients is to minimize their own delay. In Section 2.5,

I will extend these techniques and present how WebSeAl can enforce any target

load distribution.

The fact that many Web pages contain several images and frames results in

the generation of several requests to retrieve a single Web page. WebSeAl clients

measure the total response time for each such request. The total response time

measured is the complete end-to-end delay which includes connection establish-

21

ment, network delay, and server time. WebSeAl clients strive to minimize this

total delay.

Each client makes routing decisions based on the average response time of each

server. These averages are estimated using the measured response times for the N

most recent requests, for some N . The updated routing strategy is used to direct

the next N requests to the appropriate servers in the pool. Alternatively, the

client could estimate the average response times by sending occasional probes at

the cost of increased network traffic. In the current prototype, we decided against

this approach to avoid control messages between clients and servers.

One possible routing strategy clients could employ is to always contact the most

responsive server. This approach, however, will fail to collect new performance data

for the slower servers. Instead, we use probabilistic routing to ensure that clients

collect new performance data for all servers. More specifically, if Ti denotes the

average response time for requests routed from a client to server i, then the client

will route its next N requests based on the probability distribution:

pi =
1/T k

i
∑

j 1/T k
j

, (2.1)

where the exponent k ≥ 0 is a constant.

With k = 0, requests are routed to the servers randomly, without taking into

account their performance. With k = 1, we can achieve linear distribution. This

will favor fast machines while still using slower ones. However, the overall per-

22

formance might suffer due to possibly long delays from slow servers. By raising

k, more requests will be routed to the most responsive servers.2 Very high rout-

ing probabilities for the fastest servers will cause very infrequent usage of slower

ones, which in turn will decrease the potential to quickly detect improved servers.

WebSeAl imposes a minimum threshold to prevent very low probabilities.

In the current prototype, routing decisions are based on the most recent N

measurements. We are considering several alternate strategies:

• Sliding Window: Instead of calculating estimates every N requests using

the last N measurements, one could update the estimates after every mea-

surement, always using the last N measurements.

• Weighted Average: When calculating the performance estimates of repli-

cas, more recent data should impact the overall performance more than older

data, and the estimates should be updated more frequently.

• Time-of-Day: Network conditions and server usage vary with the time-of-

day or the day of the week [17, 32], and this information could be considered

in the routing strategy.

WebSeAl allows different clients to use different routing strategies. As future

work, we plan to experiment with various strategies and to investigate how each
2When k is (very) large, all requests will be routed to the most responsive replicas.

23

one and various combinations perform in different settings. Our goal is to realize

a set of routing strategies and to adapt dynamically to changing conditions.

2.5 Load Distribution

Using the results from the previous Section, the load distribution over the server

pool (also called operating point) is solely the result of the interaction among the

distributed clients and cannot be controlled by the service provider. In this Section,

I will discuss strategies which can be used at the server side to control the load

distribution while clients make their routing decisions in a noncooperative manner.

The service provider aims at distributing the load currently offered to the server

pool in a way that is deemed efficient from the system’s point of view. The provider,

for instance, might desire a load distribution which minimizes the overall average

response time of the server pool. In other cases, the provider might want to

discourage usage of certain machines—even if they are the most responsive ones—

in order to perform other site specific tasks. Therefore, a mechanism is needed

to make the distributed clients implement routing strategies which lead to a load

distribution that coincides with the desired one.

The problem of managing the behavior of systems where control is distributed

and noncooperative is a fundamental one. The interaction among the various

distributed controllers (the clients in WebSeAl) can be modeled as a game, and

24

Game Theory provides the systematic framework to study and analyze the behavior

of such systems—for an overview of game theoretic aspects in computer networking

see [42] and references therein. The operating points of the system are the Nash

equilibria of the underlying control game. Noncooperative equilibria are inherently

inefficient: while each controller strives to optimize its individual performance, the

overall behavior of the system is generically suboptimal.

WebSeAl uses a pricing mechanism to provide incentives to the noncooperative

clients to implement routing strategies that lead to the desired load distribution

over the server pool. The methodology is motivated by recent analytical studies

in the area of networking which have shown that a network/service provider can

enforce any desired operating point by means of appropriate pricing strategies [44,

45]. The key idea in WebSeAl’s pricing mechanism is that there is a weight factor

associated with obtaining service from each server in the pool. Clients make their

routing decisions based not only on performance statistics, but also on weight

information for each server. The main assumption behind this mechanism is that

the clients are indeed sensitive to weight factors. This behavior is expected in

private Intranets where clients and the pricing mechanism are part of the same

management system. For external clients accessing a Web site, this behavior can

be enforced by actual usage-based service charges (for commercial Web sites), or

by means of limited electronic budget allocated to each client—an architecture

25

developed according to these ideas is proposed in [43]. When clients are sensitive

to weight factors, the service provider can control not only the load distribution

over the available servers, but also the total offered load itself.

2.5.1 Pricing Strategies

The goal of the pricing mechanism in WebSeAl is two-fold:

• Avoidance of congestion (overload conditions) at various servers.

• Load balancing—that is, distribution of the total load offered to the Web site

among the available servers in a way that is deemed efficient by the provider.

The pricing strategies in the current version of WebSeAl are based on analytical

results in [45]. That study considers a system of general network resources accessed

by a number of noncooperative clients. Each resource is characterized by its “ca-

pacity,” that is, the maximum load that can be accommodated by the resource.

Congestion pricing is proposed as a means for avoiding overload conditions: the

weight factor per size unit (i.e., the price) of each resource is proportional to the

congestion level at the resource that depends on the total load offered to it by

the clients. More specifically, the price of each resource is given by the congestion

function associated with the resource multiplied by a weight factor. These weight

factors determine the relative sensitivity of the clients to the congestion level at

the various resources. Load balancing can be achieved by appropriate choice of

26

these weight factors. This pricing strategy is shown to allow the provider to en-

force any desired operating point while the clients make their routing decisions

noncooperatively.

Along the lines of these analytical results, the pricing strategy in the cur-

rent design of WebSeAl is based on a weight factor for each server in the pool,

which determines the relative sensitivity of the clients to the responsiveness of the

server.3 In particular, the performance metric considered by each client in making

its routing decisions is the average response time of each server multiplied by the

corresponding weight factor. Therefore, if wi is the weight factor of server i, and

Ti the average response time from the server to a client, then the routing strategy

of the client described by eq. 2.1 becomes:

pi =
1/(wiTi)k

∑
j 1/(wjTj)k

. (2.2)

2.5.2 Adaptive Algorithm to Determine Weight Factors

Server weight factors are determined based on the operating point the provider

wants to enforce. One way to determine these factors is to map the parameters

of the model considered in [45] to the characteristics of WebSeAl and apply the

corresponding analytical results, expecting to achieve a good approximation of

the desired operating point. Instead, we choose to use an adaptive algorithm,
3Note that the weight factor of each server is the same for all clients.

27

also proposed in [45], which does not depend on the details of the underlying

analytical model. The algorithm updates the weight factors iteratively, based on

the “distance” of the current operating point from the desired one.

If f ∗
i denotes the desired load at server i and fi(n) the actual load offered to

the server during the nth iteration, then its weight factor wi is updated using the

following:

wi(n + 1) = wi(n)eθi(fi(n)−f∗
i), (2.3)

where θi > 0 is a constant which determines the rate of change in the weight factor

of server i. The idea behind this iterative scheme is that, if the server is currently

receiving less load than the desired one, its weight factor should be decreased.

This decreases the clients’ sensitivity to the congestion level at the server, thus

encouraging them to direct more of their requests to it. Similarly, if the server

receives more load than the desired one, its weight factor is increased. Under a set

of general assumptions guaranteeing that the client population as a total reacts

“rationally” to price changes, this iterative scheme was shown in [45] to drive the

system to the desired operating point.

In the current implementation of WebSeAl, server load is expressed in requests

per unit of time. Considering HTTP requests, we expect that each client generates

a large number of requests, each of which will be small to moderate size. Therefore,

this is a satisfactory approximation. A more precise load metric would consider

28

Browser

Client Agent

WWW

Server Agent

HTTP Server

Figure 2.6: WebSeAl client agent and server agent.

the actual size of each request and will be incorporated in future implementations.

Each distributed Web site is equipped with a pricing manager. Based on the

target operating point, the pricing manager determines the weight factors to access

each server and communicates it to the corresponding server. More specifically, the

pricing manager periodically collects information about the load offered to each

server by contacting the corresponding server, updates the weight factors according

to iteration 2.3, and communicates them to the servers. Each server receives only

the update of its own weight factor and is responsible for advertising this to the

clients. This is achieved by piggybacking the weight factor of the server to HTTP

messages which contain the responses to the clients’ requests.

29

2.6 Implementation

WebSeAl’s server side functionality could be added to existing Web servers quite

easily and should impose only little computational overhead. However, to create

a usable system without having to modify existing servers, WebSeAl provides a

stand-alone Java application, called server agent, which implements the server side

functionality (see Figure 2.6). The server agent functionality can be outlined as

follows:

• The server agent uses the HTTP port to intercept each incoming request.

• It forwards the request to the local HTTP server.

• It accepts the response

• The server agent adds address information (including timestamps) to the

response, as needed.

• It forwards the response to the client.

The client side functionality is somewhat more complex, but it should be fairly

straightforward to extend existing Web browsers or proxies to support this func-

tionality. Similar to the server agent, WebSeAl provides a stand-alone Java appli-

cation, called client agent, which realizes the client side functionality in order to

provide a usable system without having to modify existing browsers or proxies. We

30

take advantage of the fact that virtually all browsers support proxies to intercept

requests. When the client agent is started up, it creates a server socket which ac-

cepts HTTP requests, very much like a proxy does. By configuring the browser to

use the “proxy” (i.e., WebSeAl client agent), the client agent effectively intercepts

each request. More specifically, the client agent functionality can be described as

follows:

• A client agent uses the proxy “hook” to intercept each request generated by

browsers.

• It maintains a cache of replica address information.

• It makes routing decisions as described above.

• The client agent adds a timestamp to the request.

• It measures the total end-to-end delay of the request.

• It forwards the request to the selected server.

• It accepts the response.

• The client agent transparently redirects the request to alternate servers if a

selected server remains unresponsive for a certain timeout period.

• It extracts address information and updates its cache, if necessary.

31

• It forwards the response to the client.

Proxies are generally used to allow Internet access through firewalls and perform

caching of Web documents. WebSeAl’s client agent can accommodate proxies

in two ways. A client agent can be located between one or more clients and a

proxy. Since name resolution is performed at the client agent, the proxy will

treat identical documents from different replicas of the same distributed server as

different documents and create redundant copies in its cache. Alternatively, the

client agent can be located “behind” the proxy. This configuration avoids the

problem of redundant copies in the proxy cache. Also, only one address cache and

a single set of statistical data is maintained for a number of users, resulting in

more up-to-date address caches and more accurate estimates.

Both WebSeAl’s server and client agent functionality should ideally be included

in Web servers and browser or proxies. We provide client and server agents to

enable service providers and users to take advantage of this technology without

the need to modify existing systems. Independent of whether agents are used or

existing systems are modified, for a system like WebSeAl to gain wide acceptance

it needs to be backward compatible with regard to clients and servers lacking this

functionality. WebSeAl is backward compatible and supports gradual infiltration:

• WebSeAl Client and Standard Server: A standard HTTP server is re-

quired to ignore the timestamp header in a request from a WebSeAl client

32

agent and will service the request as usual. The lack of address information

in the response indicates to the client agent that it is dealing with a stan-

dard server. It can react to this, for example, by infrequently including the

timestamp in its future requests in order to update its cache in case this site

is upgraded.

• Standard Client and WebSeAl Server: A request received by a server

agent will not contain a timestamp header if the client lacks WebSeAl func-

tionality. The server can react to this in several ways; two possibilities are:

(1) it can service the request in a standard manner without including any

address information in its response; (2) it can route the request on behalf of

the the client to individual servers.

There are a few issues which are not addressed in the current prototype. All of

these seem to be solvable, and we plan to incorporate these in future versions of

the system. Two concerns are:

• Cookies using IP numbers: Since request may be served by different hosts

with different IP numbers, it is possible that the browser stores multiple

cookies for the same distributed Web server if the cookies use IP numbers,

which can create various problems. One simple solution for this is to use the

hostname instead of IP numbers.

33

• State at the server and sessions: Some Web sites use sessions, thereby

effectively creating different states among the replicas. If the replicas can be

expected to be actively replicated, this does not pose a problem. If not, a

simple solution is to assure that a single replica is used throughout a session.

2.7 Experiments

In this Section, I will present performance results. I conducted three series of

experiments to test how WebSeAl (1) takes advantage of geographic proximity,

(2) dynamically adapts to performance changes, (3) accommodates changes in the

server pool, and (4) enforces a target load distribution over a server pool.

2.7.1 Minimizing End-To-End Delays

The first experiment consisted of two tests. I used ten mirror sites of a popular

software archive which repeatedly appears in [60] as one of the most accessed Web

sites. These tests were conducted under real world conditions, using standard ma-

chines, networks, and software. The ten servers were located on six continents: two

each in North America, South America, Europe, and Asia, and one each in Africa

and Australia. The client was running at New York University. Geographically,

the closest server to the client was located in Massachusetts, the second closest in

California.

34

The client running five threads generated 1000 requests for a file of length 4253

bytes. All requests were addressed to a single logical address. A local client agent

intercepted each request and provided transparent access to a distributed Web

site. Since I experimented with existing Web sites not running WebSeAl’s server

agent, I added the server addresses manually into the cache of the client. Also,

since the servers did not provide the client agent with a service weight factor, the

client agent used eq. 2.1 to route requests (the constant k was set to 4.0). The

clients only goal was to minimize its own delay, independent of the resulting load

distribution at the server side.

The first test consisted of two parts: one using WebSeAl’s client agent and one

contacting the closest server directly. Using the client agent, the total response

time for 1000 requests was 291.6 s. The response time measured is the end-to-end

delay which includes connection establishment, network delay, and server time.

95.4% of the requests were serviced by the closest server. The total response

time for contacting the closest server directly was 266.9 s. This translates to an

overhead of 9.2%. The fact that the WebSeAl client agent sent the vast majority

of the requests to the closest server indicates that this server was delivering the

best performance. Besides the computational and communication overhead of the

client agent, an important factor contributing to this overhead is that 4.6% of

the requests were routed to slower servers to update performance data for these

35

machines. As mentioned before, this could be avoided by occasionally sending

probes at the cost of generating additional traffic.

In the second test, I used the same setup as above, but ran the test at a

different time of the day. This time, only 3.9% of the requests were serviced by

the closest site. The total response time was 761.4 s as opposed to 1295.3 s when

contacting the closest host directly—an improvement of 41.2%. These two tests

indicate that WebSeAl can deliver significant performance gains while imposing

only little overhead, compared to the scenario when the user is able to always pick

the fastest machine.

2.7.2 Dynamic Performance Changes

The second experiment investigates how WebSeAl client agents adapt to dynamic

performance changes of individual servers. The setup was the same as in the

previous experiment. As with the previous experiment, the client, using a local

client agent, generated 1000 requests to a logical address. After 300 requests, I

started downloading several large files from the fastest site, which happened to

be the geographically closest one, thus generating additional load at that server.

This traffic was discontinued after another 300 requests (see Figure 2.7). Of the

first 300 requests, 93.3% were serviced by the closest server. This percentage sank

to 11.6% for the next 300 requests, and went up again to 93.2% for the last 400

36

0
1
2
3
4
5
6
7
8
9

10

1 11 21 31 41 51 61 71 81 91

Period

Lo
ad

Closest replica Second closest replica Others

Figure 2.7: Request distribution in a dynamically changing environment.

37

requests. The second closest server received initially 2.0% of the requests, which

increased to 69.3% when the performance of the closest server started to degrade.

This indicates that WebSeAl adapts well to performance changes in the server

pool.

2.7.3 Changes in Server Pool

For the third experiment, several identical machines in a controlled environment

were used to show how WebSeAl reacts to changes in the server pool. On each of

four machines, a WebSeAl server agent and a standard HTTP server were started.

I first used three servers, added another one after about 300 requests, and removed

one of the original three servers after another 400 requests.4 Since we used identical

machines, it can be expected that the two fully available machines would each get

300 requests, the other two each 200 requests. The actual distribution was 295

and 286 requests for the first two machines, and 225 and 194 requests for the other

two. This illustrates that WebSeAl quickly and effectively accommodates changes

in the server pool.

2.7.4 Enforcing a Target Load Distribution

For the last experiment, I used four identical machines in a controlled environment

to show how WebSeAl can enforce a desired load distribution. Two clients were
4I removed the server by sending the server agent process a kill -signal.

38

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26

Time (secs.)

Lo
ad

0

0.5

1

1.5

2

2.5

1
/ C

os
t

Load A Load B 1 / Cost A 1 / Cost B

Figure 2.8: Price and load changes with θ = 0.25/f∗.

39

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26

Time (secs.)

Lo
ad

0

0.5

1

1.5

2

2.5

3

1
/ C

os
t

Load A Load B 1 / Cost A 1 / Cost B

Figure 2.9: Price and load changes with θ = 0.5/f∗.

40

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26

Time (secs.)

Lo
ad

0

0.5

1

1.5

2

2.5

3

3.5

1
/ C

os
t

Load A Load B 1 / Cost A 1 / Cost B

Figure 2.10: Price and load changes with θ = 1.0/f∗.

41

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26

Time (secs.)

Lo
ad

0

1

2

3

4

5

6

1
/ C

os
t

Load A Load B 1 / Cost A 1 / Cost B

Figure 2.11: Price and load changes with θ = 2.0/f∗.

42

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26

Time (secs.)

Lo
ad

0

50

100

150

200

250

1
/ C

os
t

Load A Load B 1 / Cost A 1 / Cost B

Figure 2.12: Price and load changes with θ = 4.0/f∗.

43

used, each with a local client agent, and two servers with a local server agent.

On a fifth machine, I ran the pricing manager which contacted server agents and

updated weight factors every second. Each client generated 500 requests each, for

a total of 1000 requests. I started with a target load distribution of 0.5 and 0.5

for the two servers, expecting to distribute the total load evenly. After about 500

requests, I changed the target load distribution to 0.8 and 0.2, expecting to have

80% of the requests routed to one server and the rest to the other one. I ran five

tests with θ varying from 0.5/f∗ to 4.0/f∗. Figures 2.8,2.9,2.10,2.11, and 2.12,

show the prices and the measured load for each server.

As was to be expected, low values for θ result in slow changes to weight factors,

leading to slow changes in the measured load. By increasing θ, we can reach a

desired distribution faster. However, too high a value for θ results in oscillating

prices and load, which is not desirable. More importantly, for the algorithm to

converge, θ must be “sufficiently” small [45].

2.8 Related Work

The HTTP redirect [1] approach uses the HTTP return code URL Redirection [9]

to perform load balancing. A busy server returns the address of another server

instead of the actual response, asking the client to resubmit its request to that

server. This creates additional network traffic and increased latency. Every request

44

is initially addressed to the publicly known server which creates a single point of

failure and the potential for a bottleneck due to servicing redirects.

Domain Name Server (DNS) based approaches [13, 36, 18] perform load balanc-

ing at the name resolution level. The name server at the server side is modified to

respond to translation requests with the IP numbers of different hosts in a Round-

Robin fashion. This results in partitioning client requests among the replicated

hosts. The main disadvantage of this approach is that intermediate name servers

and clients cache name-to-IP mappings which can result in significant load im-

balance. A similar approach is described in [23] where anycast resolvers are used

to perform a one-to-many mapping based on locally maintained performance data

about individual replicas. The goal is no minimize end-to-end delays, but the issue

of enforcing a desired load distribution is not addressed.

Server side approaches [22, 18] use a server side routing module which redirects

all incoming requests to a set of clustered hosts based on load characteristics. This

is achieved at the IP layer—i.e., the routing module modifies all IP packets before

forwarding them to individual hosts. An alternate server side solution which avoids

modifying IP packets is presented in [19]. These approaches have the drawback

that the routing module represents a single point of failure, and therefore can

result in a bottleneck since all requests pass through it. In addition, server side

approaches work well only for clustered servers.

45

Perhaps most closely related to WebSeAl is the work presented in [63]. It

uses a modified Web browser to perform routing decisions at the client side. The

browser downloads an applet which the service provider needs to implement to

realize service specific routing. This approach creates increased network traffic

due to applet transmission and potential control messages between the applet and

the servers.

2.9 Conclusions

WebSeAl is a novel architecture for managing resources of Web sites consisting

of a pool of geographically dispersed, replicated servers. Unlike most existing

proposals, in WebSeAl it is the responsibility of the clients to route their requests

to individual servers. This architecture supports geographic distribution, scales

well with the number of users, and provides fault masking.

I proposed routing strategies for directing client requests to the most responsive

servers. Unlike server side approaches, routing decisions are based not only on

server load, but also on network traffic conditions. I also proposed strategies that

can be used at the server side to induce efficient allocation of resources (load

balancing) while clients make their routing decisions in a noncooperative manner.

Motivated by recent studies on game-theoretic aspects of networking, I proposed

a pricing mechanism that provides incentives to the clients to route their requests

46

in a way that is deemed efficient by the service provider.

I have implemented a prototype system based on this architecture and its have

validated its functionality through a series of experiments. These results indicate

that WebSeAl can deliver significant performance gains while imposing minimal

overhead.

47

Chapter 3

Metacomputing on the Web

3.1 Introduction

Over the last few years, the Internet has grown rapidly connecting millions of

mostly idle machines. Its latest reincarnation as the Web has greatly increased its

potential for utilization in diverse settings, including its potential to be used as a

gigantic computing resource. On the other hand, utilization of local area networks

as a parallel computing platform has been attractive for many years. There have

been numerous research projects aimed at this goal. Based on their success, and as

a natural evolutionary step, attempts have been made to extend existing systems

from local area networks to wide area networks.

However, utilizing the Web as a metacomputing resource introduces new diffi-

culties and problems different from those that exist in local area networks. First,

48

many of the challenges that have been looked at individually (e.g., security, pro-

grammability, and scheduling) need to come together in a comprehensive manner.

And secondly, the Web invalidates many of the assumptions used to build parallel

environments for workstation clusters. For example, there is lack of a shared file

system, no one has accounts on all connected machines, and it is not a homogeneous

system. An environment to effectively utilize the Web as a metacomputing resource

needs to address the following important issues: 1) programmability, 2) dynamic

execution environment, 3) heterogeneity and portability, and 4) security.

Programming (Virtual Machine) Model: Generally, neither the program-

mer nor the end-user wants to deal with a dynamic and an unpredictable envi-

ronment such as the Web. In fact, users are not interested in knowing whether

their programs are running locally or remotely (perhaps in a distributed manner).

For the Web to become an effective computing platform, the programming model

needs to be decoupled from the dynamics of the execution environment. That

is, programs need to be developed for a uniform and predictable virtual machine;

the runtime system needs to realize the virtual machines. Otherwise, the task of

program development becomes nearly intractable.

Dynamic Execution Environment: The Web is a dynamic environment

comprised of many administrative domains; for example, machines become avail-

able and unavailable abruptly and network delays are unpredictable. Existing

49

systems address these issues by providing some level of load balancing and fault

masking. However, the extent of uncertainty is much greater on the Web.

Heterogeneity and Portability: The Web contains different types of hard-

ware, running different operating systems, connected with different networks. Het-

erogeneity and portability are imperative to encompass the Web. Current hetero-

geneous systems are low level and generally employ a message-passing paradigm.

High level systems based on virtual shared memory generally do not support het-

erogeneous environments.

Security and Accessibility: Cooperative work over the Web requires many

facets of security measures. People need reassurance to allow “strangers” to execute

computations on their machines. On local area networks this is accomplished by

an administrator maintaining user access-rights and user accounts. Thus, the

network becomes available only to a trusted set of users. This is not a feasible

solution for the Web. In an ideal situation, any machine on the Web should be

able to contribute to any ongoing computation on the Web.

A comprehensive solution for the Web requires that all of these issues be re-

solved. No system currently addresses all or even a majority of these. I present a

system called Charlotte which addresses these issues.

The research leading to Charlotte started as theoretical work where provable

methods for executing parallel computations on abstract asynchronous processors

50

were developed [40, 38, 2]. The outline of the virtual machine interface to the

actual system was proposed in [37]. Theoretical results were then interpreted

in the context of networks of workstations in [20]. The above were significantly

extended and validated in the Calypso [4] system which provides a virtual machine

interface and a run-time system targeting homogeneous networks of workstations.

This separation of programming and execution environment and the techniques

employed in Calypso for load balancing and fault tolerance are also incorporated

in Charlotte. We build on these and other complementary research efforts to offer

a unified programming and execution environment for the Web. Our work on

Charlotte has resulted in several original contributions summarized below:

• Charlotte is the first environment that allows any machine on the Web to

participate in any ongoing computation. Two key factors make this possible.

First, the system does not require a shared file system, nor does it require

the program to reside on a local file system before a machine can participate

in a computation. The Charlotte runtime system transmits the program to

participating machines. Second, it is not necessary for a user to have an

account (or any other type of privilege) to utilize a machine on the Web. The

decision to involve a machine in a computation is made by the owner of that

machine. These factors mean that potentially any machine can contribute to

any running Charlotte computation on the Web.

51

• A novel technique for providing a distributed shared memory (DSM) abstrac-

tion without relying on operating system or compiler support. Current tech-

niques for shared memory require either support from the operating system

(in the form of setting page access-rights) or a compiler (to generate the

necessary runtime code at each memory access). Shared memory systems

based on operating system support are neither system independent nor safe.

Compiler-based shared memory systems are tied to a particular programming

language and a particular target language. Our approach does not suffer from

these limitations, which makes it possible to provide virtual shared memory

at the programming language level.

• Two integrated techniques, eager scheduling and two-phase idempotent exe-

cution strategy are used for load balancing and fault tolerance. We extend

previous work originally developed in a different setting to deal with the

dynamics of the Web.

• We leverage existing isolated contributions by providing a unified and compre-

hensive solution. Java is used for heterogeneity and portability. Charlotte’s

programming environment can be conceptually divided into a virtual machine

model and a run-time system. The virtual machine model provides a reliable

shared memory machine to the programmer and isolates the program from

the execution environment. The run-time system realizes this model on a set

52

of unpredictable, dynamically changing, and faulty machines.

• Charlotte is the first programming environment for parallel computing using a

secure language. The Java programming language guards against mischievous

code attacking local resources. Charlotte is built on top of Java without

relying on any native code. This means that a Charlotte program provides

the same level of security as a Java and Java-capable browsers.

The remainder of this Chapter is structured as follows: Section 3.2 describes

Charlotte’s virtual machine model and Section 3.3 the syntax and semantics of

Charlotte programs. I then present two integrated techniques used in Charlotte,

describe its runtime system, and show how machines are matched with parallel

computations. In Section 3.7, I discuss the distributed shared memory implemen-

tation in Charlotte. Section 3.8 presents experiments, followed by related work

and concluding remarks on Charlotte.

3.2 Virtual Machine

If a parallel program is to utilize the Web, its execution environment is not known

at development time—the number of available machines, their location, their capa-

bilities, and the network cannot be predicted ahead of time. In general, a program’s

execution environment will differ for each invocation. To deal with the dynamics

53

WWW

(b)(a)

Figure 3.1: Perfect virtual machine vs. unreliable execution environment.

of the execution environment, either the programmer must explicitly write adap-

tive programs, or a software environment, such as a runtime system, must deal

with the dynamics. We feel that the former solution puts too much strain on the

programming effort. We conjecture that for an effective utilization of the Web,

the programming model must be decoupled from the execution environment. Pro-

grams should be developed for a uniform and predictable virtual machine, thus

simplifying the task of program development; the runtime system should imple-

ment virtual machines and deal with the dynamics of the execution environment.

Charlotte allows high level programming based on the parallelism of the prob-

lem and independent of the executing environment. Programs are written for a

virtual parallel machine with infinitely many processors sharing a common name-

space (see Figure 3.1(a)). The execution environment is the Web, an inherently

54

unreliable distributed platform where different machines exhibit different perfor-

mance, availability of machines change over time, machines fail unexpectedly, net-

work delays vary significantly, and networks partition (see Figure 3.1(b)). The

runtime system executes the given program on this platform; it performs load

balancing among different machines, integrates newly available machines into a

running computation, detects and removes failed machines from a computation,

and maintains the coherence of distributed data transparently.

3.2.1 Programming Model

Charlotte programs are written by inserting parallel tasks into a sequential pro-

gram. Computationally intensive work is performed by parallel tasks and high-level

control flow, I/O, and other activities which are not computationally intensive are

handled by the sequential code.

The execution of a parallel task is called a parallel step and the execution

segment between two consecutive parallel steps a sequential step. The execution

of a Charlotte program consists of alternating sequential and parallel steps. The

execution always starts with a sequential step and ends with a sequential step, both

or either one of which may be empty. The execution of a parallel step consists of

any number of concurrent routines. A routine is analogous to a standard thread

in Java, except for its capability to execute remotely. The number of routines is

55

Parallel Step

Sequential Step

Routines

Figure 3.2: Charlotte’s execution model.

independent of the actual number of machines available at runtime. Sequential

steps consists of standard sequential Java code. Figure 3.2 illustrates a fragment

of an execution.

3.2.2 Distributed Shared Memory Semantics

In a Charlotte program, the data is logically partitioned into private and shared

segments. Private data refers to what is local to a routine and cannot be seen by

others. The shared data is distributed and can be seen by others. For reasons to be

discussed in Section 3.7, we have chosen to implement distributed shared memory

within the language, at the data type level. That is, for every basic data type in

56

Java, there is a corresponding Charlotte data type implementing its distributed

version. The consistency and coherence of the distributed data is maintained by

the runtime system.

In an attempt to improve performance, many DSM systems have introduced

multiple memory-consistency semantics [48]. The decision as to which consistency

model is best suited for a particular application is left to the programmer. We

feel this generally complicates a task the researchers were seeking to simplify. In

Charlotte, we provide a single and intuitive memory semantics: Concurrent Read,

Concurrent Write Common (CRCW-Common). This means that one or more

routines can read a data variable, and one or more routines can write a data variable

as long as they write the same value. More specifically, read operations return

the value of the object at the time the parallel step began, and write operations

become visible at the completion of the parallel step. Charlotte is not bound to

this memory model, and, as a matter of fact, other memory semantics have been

implemented in various versions of Charlotte, e.g. CR&EW. All the experiments

in Section 3.8 were conducted using the memory semantics CRCW-Common.

The CRCW-Common semantics are implemented with the Atomic Update pro-

tocol. Intuitively, this means that write operations are performed locally and

propagated at the completion of the routine. The advantages of this protocol are:

• Network traffic is reduced by packing many modifications into one network

57

packet.

• Write operations are efficient since they are performed locally and do not

require invalidation.

• Atomic execution of routines is guaranteed (since each routine is executed in

an all-or-nothing fashion)

• Each routine can execute in isolation and can be verified independently of

the execution order.

• The control logic in the coherence protocol is simple.

It should also be noted that the atomicity of updates is fundamental for the load

balancing and fault masking techniques used in Charlotte, which will be discussed

later.

3.3 Syntax and Semantics of Charlotte Programs

Charlotte does not modify the Java Virtual Machine, nor does it rely on a precom-

piler or require any kind of external runtime support. Its complete functionality

is realized as a set of Java classes.

As mentioned in Section 3.2, Charlotte programs proceed with alternating se-

quential and parallel steps, and shared data can be accessed by concurrent routines.

58

Next, we will describe the syntax and semantics of sequential steps, parallel steps,

and shared data types.

Sequential Steps: A sequential step of a Charlotte program consists of a

sequence of standard Java statements.

Parallel Steps: Semi-formally, the syntax for a parallel step is as follows:

parBegin(); routine-list parEnd();

The closing parEnd() serves as a synchronization barrier.

routine-list consists of sequence of addDroutine() statements. Any number of

routines may be defined within one parallel step.

The syntax for addDroutine() is as follows:

addDroutine(Class class, int numRoutines);

The first argument to addDroutine is a subclass of Droutine (a Charlotte

class) and is required to implement the function drun(). The second parameter

defines the number of instances to run concurrently (which is passed to drun(),

as described next).

drun() has the following syntax:

drun(int numRoutines, int id);

The first argument to drun() specifies the number of concurrent routines in

59

the current parallel step (as passed to addDroutine()). The second argument is

the routine identifier (in the range 0,. . . ,numRoutines−1).

Shared Data Types: For every basic data type of Java, Charlotte implements

a corresponding distributed version. For example, where Java provides int and

float types, Charlotte provides Dint and Dfloat types. These are realized as

standard Java classes. Objects of these classes can be instantiated in the standard

way. For example, a two-dimensional array of floats of size 500 ∗ 500 could be

instantiated as follows:

public Dfloat a[][] = new Dfloat[500][500];

Since Java prohibits operator overloading, distributed objects are accessed and

modified with explicit function calls (get() and set()). For example, an element of

the above declared array could be accessed and modified as follows:

float f = a[i][j].get()

a[i][j].set(1.23)

Charlotte’s current implementation of distributed shared data requires a de-

terministic instantiation order. More specifically, all distributed objects must be

instantiated in the same order at each site. The rationale behind this requirement

will be discussed in Section 3.7. For now, it may suffice to remark that this can

60

B

x =

A C

Figure 3.3: Matrix multiplication in Charlotte.

be easily achieved by instantiating all distributed objects in the constructor of a

single class.

As an example of a Charlotte program, consider matrix multiplication. One

possible approach to write a parallel matrix multiplication is to produce each row

of the resultant matrix in a separate routine. To produce one such row, the routine

needs the values of the corresponding row from one of the source matrices and all

of the second matrix (see Figure 3.3).

The relevant fragments of the Charlotte program for matrix multiplication are

shown in Figure 3.4. The important points to note here are:

• The program’s parallelism is based on the parallelism of the problem at hand

and not the execution environment. The same program can execute on one

or any number of machines, depending on availability.

• The programmer does not need to be aware of the fact that this application

can be executed in a distributed fashion, utilizing multiple machines on the

Web.

61

import charlotte.∗;
// . . . code cut here . . .

public class MatrixMult extends Droutine {
public static int Size = 500;
public Dfloat a[][] = new Dfloat[Size][Size];
public Dfloat b[][] = new Dfloat[Size][Size];
public Dfloat c[][] = new Dfloat[Size][Size];

public MatrixMult() { 10

// . . . code cut here . . .
}

public void drun(int numTasks, int id) {
float sum;
for(int i=0; i<Size; i++) {

sum = 0;
for(int j=0; j<Size; j++)

sum += a[id][j].get() ∗ b[j][i].get();
c[id][i].set(sum); 20

}
}

public void run() {
// . . . code cut here . . .
parBegin();
addDroutine(this, Size);
parEnd();
// . . . code cut here . . .

} 30

// . . . code cut here . . .
}

Figure 3.4: Charlotte matrix multiplication code: MatrixMult.java.

62

• Integrating machines into the computation, load-balancing, fault-masking,

and data coherence are transparent.

• The services provided by Charlotte do not require any language or compiler

modifications.

3.4 Eager Scheduling and TIES

The paradigm that Charlotte embodies was first described in [40]. That paper

described a methodology for instrumenting general parallel programs to automati-

cally obtain their fault-tolerant counterparts that could run on an abstract shared

memory multiprocessing machine. While the solutions in [40] were formulated in

the context of synchronous faults, they were later applied in [39, 38] to a certain

variant of asynchronous behavior, i.e., could run on a machine whose processors

take arbitrary amounts of time to execute each step. This research formed the

basis of the ideas first incorporated into Calypso [4] and later in Charlotte.

A unified set of mechanisms, eager scheduling and collating differential memory,

is used to provide the functionality of Charlotte. The idempotence property is

fundamental in Charlotte: a code segment can be executed multiple times (with

possibly some partial executions), with exactly once semantics.

The importance of idempotence, and the utilization of eager scheduling to take

advantage of it, was discovered in [40] in an abstract context. The term “eager

63

scheduling” was termed later. Eager scheduling is a mechanism for assigning con-

currently executable tasks to the available machines. Any machine can execute

any “enabled” task, independent of whether this task is already under execution

by another machine.

The mechanism of collating differential memory provides logical coherence and

synchronization while avoiding false sharing. It is an adaption and refinement of

the two-phase idempotent execution strategy [40]. Memory updates are collated

to assure exactly-once logical execution. This prevents false sharing and supports

efficient implementation of idempotence in addition to other performance benefits

which will be described later. Details about these mechanisms will be discussed in

Section 3.7.

Charlotte relies on these three mechanisms to ensure that the available ma-

chines are used where they are needed most and without delays associated with

false sharing. A “participating” machine is used to mask faults and/or increase

the parallelism depending on a transient state of the system. A critical feature of

Charlotte is that it is neither a fault-tolerant system extended for parallel process-

ing nor a parallel processing system extended for fault tolerance. A single unified

set of mechanisms provides both parallel processing and fault tolerance.

In summary, eager scheduling combined with TIES has the following properties:

• Any of the machines that are executing concurrent routines can fail or slow

64

down at any time.

• As long as at least one “participating” machine does not continuously fail,

all jobs will be completed.

• A crash-failed machine or a slow machine is transparently bypassed by faster

ones, leading to a balanced system and fault tolerance.

• New machines can be transparently and productively integrated into a com-

putation anytime, even in the middle of a parallel step.

• Computations do not stall while dealing with system’s asynchrony and faults.

3.5 Runtime System

Charlotte provides three major services: (1) scheduling service, (2) memory service,

and (3) computing service. In the current prototype, the scheduling service, the

memory service, and parts of the computing service executing the sequential steps

are fused into a single process—the management service, or the manager for short.

The computing service performs the computationally intensive parallel routines;

I refer to these processes as workers. A single manager and one or more workers

together implement the virtual machine the program was written for.

Charlotte’s runtime environment is the Web. In general, the execution of a

Charlotte program is distributed over a dynamically changing set of machines. We

65

WWW

Manager

Worker
Worker

Worker Worker

Figure 3.5: Charlotte’s runtime environment.

assume that a user has one machine under her control and that this machine is

highly reliable. The user, however, may wish to utilize other machines on the Web

which are unreliable. The user does not need an account or any kind of privileges

on these machines. Also, there is no need for a shared file system.

Charlotte employs a volunteer-based approach [54] to parallel computing on

the Web. Specifically, a user can initiate a parallel computation on her machine,

but the decision as to which other machines contribute is made by the owners

of these machines. If a volunteer wishes to donate her resources to a parallel

computation, she joins in and continues to contribute until either the computation

ends or the volunteer decides to discontinue, which may happen at any given time.

The manager executes on the user machine where the parallel computation was

initiated, and the worker execute on volunteer machines. This setting is depicted

66

in Figure 3.5. I will now sketch the overall execution strategy.

3.5.1 An Overview of the Execution

A Charlotte program is executed by exactly one manager process running on the

user’s reliable machine, and a dynamically changing set of worker processes running

on arbitrary machines connected to the Web which may come and go, or slow down

and speed up unpredictably, depending on the transient availability of resources

and not on the properties of the computation.

During a computation, the manager executes the sequential steps. Parallel

steps are executed by the available workers and “managed” by the manager. Each

particular parallel step has some number of concurrently executable routines as

specified by the addDroutine calls of the corresponding program. I will refer to

each instance of a routine as a job. Each of the available workers contacts the

manager and obtains a work assignment: an unfinished job. It then proceeds to

execute it. Once finished, the worker reports the results back to the manager and

requests another assignment. The manager keeps track of jobs (which ones have

been assigned, which ones have been completed, etc.) and has the responsibility

to assign more work. At first, it prefers to assign jobs which have not yet been

assigned to any worker. But what should it do when the number of available

workers exceeds the number of jobs? Or when all jobs have been assigned but not

67

Worker A Manager Worker B

Assign J2

Finish J1

Assign J1

Assign J3

Finish J3

Assign J4

Finish J4

Finish J2

Assign J4

Figure 3.6: Eager scheduling example.

finished, and there are idle workers eager to work? Eager scheduling implies that if

there is unfinished work, and there is an idle worker, then the work will be assigned

to that worker. The manager simply assigns work using eager scheduling until all

jobs are completed, at which point that parallel step is considered complete.

Although I have not discussed what it means for a worker to do useful work,

it should be clear how eager scheduling leads to both, load balancing and fault

tolerance in a unified solution. A crash-failed worker is a special case of a slow

worker—it is an infinitely slow worker—and a fast worker will never wait for a

slower one when it can overtake it. The “unnecessary” computation is generally

small, and in practice it is essentially free.1 In experimenting with various pro-
1Note that the replicated work is assigned to workers that have “nothing else to do” beyond partici-

68

grams, we were fully charged for this extra work, and we observed that the overhead

was, in fact, very low. In Section 3.8, I will describe several experiments and report

the results Charlotte achieved.

Figure 3.6 illustrates eager scheduling through an example. Two machines,

Worker A and Worker B, work on a parallel step consisting of four jobs of the

same length. Worker A is fast and completes job J1 and starts working on J3,

before the slower Worker B finished job J2. However, while executing job J4,

Worker B crashes. Once Worker A finishes J3, the manager eagerly schedules J4

to Worker A. This illustrates that Charlotte does not require any failure detection

of worker machines; failures are automatically handled by eager scheduling.

For a worker to do useful work, it must not only perform the computation that

is specified by its assignment, but it must perform operations on the manager’s

data-set, i.e., share data, and return the results back to the manager. Shared data

is demand-paged in a manner analogous to that of virtual memory systems. But,

as stated before, this alone does not ensure idempotence of updates and memory

coherence in presence of eager scheduling. The additional techniques required for

this are discussed next.
pating in the current parallel step.

69

3.5.2 A Sample Execution

As described above, a Charlotte program is executed by a single manager and a

dynamically varying set of workers.

When the computation starts, the manager executes the sequential code until

it reaches the first parallel step. It then suspends its execution and gets ready to

manage the execution. As an example, consider the following program fragment:

...

parBegin();

addDroutine(m, n);

parEnd();

...

Assume that m is an instance of a class called MyClass and the variable n is

evaluated to 4. The manager then prepares a table called the progress table and

initializes it as follows:

Step Class Width Identification Started Finished

2 MyClass 4 0 NO NO

2 MyClass 4 1 NO NO

2 MyClass 4 2 NO NO

2 MyClass 4 3 NO NO

70

The third row of the table, for instance, indicates that this is step number

2; that a job defined by the drun() function of the class MyClass needs to be

computed; that there are four such jobs; that this rows describes the third out of

four sibling jobs (numbered 0, 1, 2, 3); that no worker has started working on this

job; and that its computation has not yet finished.

Assume that the first three jobs have been assigned, and that the first and the

third job are still being worked on, but the second has already finished. This is

reflected by the following table:

Step Class Width Identification Started Finished

2 MyClass 4 0 YES NO

2 MyClass 4 1 YES YES

2 MyClass 4 2 YES NO

2 MyClass 4 3 NO NO

Charlotte utilizes a simple version of eager scheduling as follows. The manager

listens to workers requesting assignments. It assigns to each free worker a job

that has not yet been finished—among all such jobs it assigns one that has been

assigned the least number of times.

I now turn to the description of a worker. The worker, executing within a

browser, contacts the manager for work and initializes the shared data as “not

valid”. I will describe the association of workers and manager in Section 3.6 and

71

the issues regarding shared data in Section 3.7. The manager sends the worker

an assignment specified by the 3 parameters class, width, and identification.

The worker now starts executing this assignment: it performs a call to the drun()

function of class with the parameters width and identifier. During the exe-

cution, the first time a worker accesses a “not valid” shared variable, an internal

signal is raised. Charlotte’s signal handler fetches the appropriate data from the

manager, installs it in the worker’s name space, and marks it as “valid”. Then.

the computation proceeds. When the worker finishes the job, it identifies all of its

dirty data and sends them to the manager. It then re-invalidates its shared data

and contacts the manager for another assignment.

The manager accepts the first completed execution for each job and discards

subsequent ones. Late updates from workers are easily recognized and ignored

(e.g., an update for a job assigned in step 2 but arriving in step 4).

The manager buffers the updates until the end of a parallel step, at which time

all updates are performed. Different parts of the shared data can be updated by

different workers, as long as the CRCW-Common condition is met. Note that this

condition is an aspect of the logical program design, and is independent of the

various workers’ assignments. In a parallel step, values read by a worker are those

existing at the beginning of the step, and the updated values are readable only at

the beginning of the next step.

72

The shared memory is always logically coherent as far as the program is con-

cerned yet there is no need for expensive mechanisms such as distributed locking

or page shuttling. This is due to the exploitation of the synchronization primitive

which is a side effect of the language construct, as well as transmitting changes

only. Also, the collating technique (buffering updates, accepting the first update,

discarding the others) in fact implements two-phase idempotent execution strategy.

As a consequence, correctness is assured in spite of the multiplicity of executions.

We have added the following technique to Charlotte to improve its performance.

Memory that has been paged-in by a worker is kept valid as long as possible. For

instance, the manager knows in which step an object had been modified last. For

instance, if some object was modified last in step 4, it was read by some worker

in step 6, and that worker is working on a job in step 8, then the worker does not

fetch the object but accesses its cached copy. This is a low cost (almost free) strat-

egy which results in a significant performance benefit. Note that read-only shared

objects are fetched by a worker at most once, while write-only shared objects are

never fetched. Modified shared objects are re-fetched only when necessary. To

achieve this, invalidation requests are piggybacked on the work assignment mes-

sages, bearing only little additional cost. The programmer does not declare the

type of coherence or caching technique to use, rather, the system adapts dynami-

cally.

73

It should be clear from the above description that workers (and their location)

and jobs are not related in any fundamental way. In fact, the syntax of Charlotte

does not even allow the programmer to specify the workers or how to distribute the

data. However, Charlotte has recently been extended with “colocation” techniques

using annotations [35] to allow the manager to assign a job based on its expected

data access patterns and the cached shared data of candidate workers.

3.6 Matching Workers with Computations

It is very likely that at any moment there are idle machines on the Web willing

to help in some computation, and that there are computations that could utilize

these machines. Both these sets are dynamic. Now, the difficulty lies in associating

an idle machine with a computation. It is only when this association has been

established, and the necessary program fragment has been made accessible, that

an idle machine can contribute to the computation. However, the lack of trust in

allowing “strange programs” to execute on local hardware is a serious issue. The

complete problem is of great importance since it lies at the core of providing an

effective metacomputing environment.

As a first version, we have adopted a solution which does not scale for settings

such as the World Wide Web, but it is an effective solution for our network at

New York University. Oversimplifying it, when a Charlotte program reaches a

74

Figure 3.7: Sample list of active Charlotte programs.

75

parallel step, it registers itself with a specific daemon process. This action creates

an entry in a URL homepage (see Figure 3.7). Any user on our network can visit

this homepage using any Java-capable browser and see the list of active programs.

If the user wishes to donate some of the CPU power of her machine, she can simply

click on an entry. This will load the required code to the user’s machine and start

assisting the ongoing computation.

To overcome the limitations of this solution, we have recently incorporated a

directory service into Charlotte to match users with computations. It provides a

scalable solution and works fully within browsers. I will discuss the details of this

directory service in Section 4.4.

Since Charlotte is entirely implemented in Java, it provides the same security

guarantees as Java. Java guarantees the protection of local resources from pro-

grams. Although there seem to be security holes in the current implementation

(e.g., [21]), these are constantly being addressed. Charlotte will transparently take

advantage of these improvements. Once users stop being afraid of programs that

come over the network, we feel that they will have more incentive to allow others

to use their idle CPU cycles

It is important to stress that Charlotte supports heterogeneous systems, which

makes it possible for any idle machine to execute a parallel computation alongside

any other—a necessity for the Web.

76

3.7 Distributed Shared Memory

To provide the abstraction of a single address space to multiple programs running

on different machines, distributed shared memory systems must detect accesses to

shared data and propagate updates. For a shared memory system to be realized

over the Web, hardware and operating system independence is a necessity, and

language/compiler independence is desirable. In Charlotte, we achieve both.

3.7.1 Existing Techniques

There have been two approaches to implement distributed shared memory at the

software level: one relies on virtual memory page protection and the other on a

compiler to provide software write detection.

Traditional software-based shared memory systems rely on virtual memory page

protection [47, 4, 41]. Detection of a data access is done by protecting the virtual

memory pages and catching the page-fault signal generated by the operating sys-

tem. A write operation sets a dirty-bit for each page, indicating that the change

needs to be propagated. The granularity of shared data segments is determined

by the system—a virtual memory page. This can result in false sharing when the

same memory page is accessed independently by multiple processes. Since page

size and data format vary across different machines and operating systems, this

is not a viable option for a heterogeneous environment such as the Web. Fur-

77

thermore, Java does not support the required operating system calls to protect a

virtual memory page and to catch a page-fault signal.

Another technique to implement DSM relies on compiler and runtime sup-

port [64]. A compiler inserts the necessary code to detect and service an access to

the shared memory region. This approach has the advantage that the granularity

can be controlled, meaning that it alleviates false sharing. The disadvantage is

that it requires the system to continuously evolve with the language upon which

it is based. We feel this is not desirable.

Charlotte’s shared memory abstraction is neither operating system nor compiler

based. We were introduced to the feasibility of software write detection by the

work in [64]. However, rather than using a compiler, we chose to realize the shared

memory abstraction through a shared name-space. This method combines the

advantages of both methods mentioned above:

• Programs can run on any combination of hardware and operating systems

where Java is available.

• Charlotte does not need to evolve with every change to the Java language

and compilers.

• The shared memory abstraction is available in heterogeneous environments.

• The granularity of shared data can be controlled dynamically.

78

3.7.2 Implementation

Charlotte’s distributed shared memory is implemented within the language, at the

data type level; that is, through Java classes. In addition to a value field, each

shared data object maintains its state which can be one of not valid, readable, or

dirty. A not valid state indicates that the object does not contain a meaningful

value; readable indicates that the object contains a meaningful value which can

be used in a read operation; and dirty indicates that the local value is meaningful

and that it has been modified.

Distributed objects are read and written through class member functions. A

read operation on a readable or a dirty object just returns its value, which is

locally available. Otherwise, its value is retrieved from a manager process over

the network and its state set to readable—this corresponds to demand-paging in

traditional virtual memory page based systems. On a write operation, the value

is modified and the object state set to dirty—this corresponds to setting the dirty

bit in traditional systems. A dirty object propagates its value at the end of the

job to the manager.

A problem in this implementation occurs when an instance of an object in

not valid state is accessed. How does this particular instance convey its identity to

the manager to retrieve its value? After all, the manager has many instances of the

same class. Our solution is based on a unique identifier, assigned deterministically,

79

Local Data

Shared Data

Local Data

Id
Dirty?

Value

Memory of the
user machine

...

Local Data

Shared Data

Local Data

Id

Dirty?

Value

Memory of a
volunteer machine

...

Figure 3.8: Distributed objects in Charlotte.

based on instantiation order. This requires that distributed objects be instantiated

in the same order at each site. For simplicity, we choose to instantiate all the

distributed objects in the constructor of a single class. This guarantees that each

replica of a distributed object is assigned the same identifier at every site. This

scenario is depicted in Figure 3.8.

We have implemented two techniques to improve the performance of shared

memory in Charlotte. First, a read operation does not result in transferring the

value of a single item. Instead, multiple items are shipped in a single network

packet. The size of each packet can be set dynamically at runtime, thus adjusting

the granularity of shared memory. Second, the information as to which objects are

80

invalidated is piggy-backed with the manager’s job assignment. Thus, each worker

page-faults on read-only data items at most once.

The issue of choosing the size of the packet, though, can be difficult. Larger

packet sizes reduce data request frequency, but increases the potential for false

sharing. Similarly, smaller packet sizes reduce the chance for false sharing, but

increase the data request frequency. Ideally, the whole “read set” should be sent

to a worker along with the job assignment. This could be achieved by using

annotations, for example, allowing the programmer to give the runtime system

hints about data access patterns. This would serve two purposes: (1) the latency to

wait for data requests is avoided, and (2) false sharing is avoided. Furthermore, if it

is guaranteed that the specified read set is complete, the overhead of catching page-

faults can be eliminated altogether. These changes, along with various intermediate

solutions, have recently been incorporated into Charlotte. The details can be found

in [35].

In summary, our approach for realizing distributed shared memory on loosely

coupled machines does not rely on virtual memory pages (operating system) nor

a compiler. Similar to compiler based systems, it runs in user-space, supports

variable data granularity, and avoids false sharing. At the same time, it is not

dependent on any particular implementation of the language or compiler. It is im-

portant to note that this technique is not tied to any particular memory coherence

81

model—it is a general technique which can be used to implement many different

memory coherence models.

3.8 Experiments

Here I present performance results. To evaluate the performance of Charlotte,

we chose a scientific application from statistical physics—computing the 3D Ising

model [10]. This is a simplified model of magnets on a three dimensional lattice

which can be used to describe qualitatively how small systems behave. Computing

the Ising model involves an exponential number of independent tasks and very

little data movement.

All experiments were conducted using interpreted Java. A C program runs

an order of magnitude faster than an interpreted Java program. However, Java

compilers are becoming more and more available and they provide performance

much closer to C. We expect these results to carry over transparently.

3.8.1 Setup

We wrote a single Charlotte program and ran it on sets of workstations under

different patterns of slowdowns, failures, and recoveries. The same program was

used in each case and the runtime parameters did not change. Results are shown

for the following cases, all for the same Charlotte program:

82

1. The program running on a set of identically behaving, otherwise unused work-

stations. We wanted to measure speedups when there were no failures, no

slow-downs, and no need for load balancing or fault tolerance (of course, the

runtime system “did not know this.”)

2. The program running on various combinations of fast and slow machines.

3. The program running on a set of machines, some of which crash-fail during

the computation.

4. The program running on a set of machines, and additional machines becoming

available during the computation.

All experiments were conducted as follows:

• The identical Charlotte program was used for all tests.

• The machines used were up to ten identical Sun SparcStation 5 workstations,

connected by a 10Mbit Ethernet. The network was disconnected from the

rest of our network to eliminate any outside traffic.

• All experiments computed the Ising model with a period of 23.

• The program consisted of a sequential step performing certain initializations

and starting a timer, followed by a parallel step with 23 routines, and a

83

0.5

1.0

availablity

time

100 200 300

Machine A

0.5

1.0

availablity

time

100 200 300

Machine B

0.5

1.0

availablity

time

100 200 300

Machine C

0.5

1.0

availablity

time

100 200 300

Machine D

0.5

1.0

availablity

time

100 200 300

Machine E

0.5

1.0

availablity

time

100 200 300

Machine F

Figure 3.9: Profiles of machines available for the experiments.

closing sequential step which was empty except for stopping the timer and

determining the overall time the parallel step took.

To conduct the experiment, I defined six machine profiles. Each machine profile

determines its behavior. Here are the descriptions of each machine profile, see also

Figure 3.9.

84

• Machine A is available to the computation 100% for the duration of the

computation. This is a machine which does not fail or slow down during the

execution. I call this a fast machine.

• Machine B is available to the computation 50% for the duration of the com-

putation. This is a machine which contributes to the computations at half

its regular speed. This is achieved by running a background process (called

hog), at high priority, which runs for a second and sleeps for a second. I call

this a slow machine.

• Machine C crash-fails after 200 seconds from the start of the computation.

This is achieved by killing the worker process manually at the corresponding

time.

• Machine D joins the computation after 200 seconds from the start of the

computation. This is achieved by starting the worker process manually at

the corresponding time.

• Machines E crash-fails after 100 seconds and joins the computation after 200

seconds from the start of the computation. This is achieved by killing and

starting the worker process manually at the corresponding times.

• Machines F joins the computation after 100 seconds and crash-fails after 200

seconds from the start of the computation. This is achieved by starting and

85

killing the worker process manually at the corresponding times.

All times reported are “wall clock” or elapsed times, not CPU or virtual times.

Since we cannot improve the performance of sequential tasks, we measured the

times from the start of the parallel step until the end of the parallel step. The

manager runs on a machine which does not fail, but may slow down. A single

worker runs on each participating machine, including the machine the manager is

running on. It should be stressed that at time t = 0, the workers have no shared

data and at the end of the computation, t = T , the manager has received and

processed all the outputs from the workers. Thus, we will account for all the costs

associated with the execution of the parallel steps.

In each experiment, we use up to ten machines from the six profiles. Whenever

a machine is “available” to us, we are charged for its use, regardless of whether we

are in fact able to benefit from it or not.

In addition, all overhead (networking, file access, swapping, updating memory,

etc.) are included in the charges, regardless of whether we have control over it or

not. Hence, the results are based on quite conservative assumptions.

3.8.2 Results

We conducted three series of experiments and I will describe them in turn. First,

we study the performance and overhead of Charlotte. Second, we examine the

86

0

200

400

600

800

1000

1200

1400

Seq. 1 2 3 4 5 6 7 8 9 10

Number of Workers

R
un

tim
e

(s
ec

s.
)

0

1

2

3

4

5

6

7

8

9

10

S
pe

ed
up

Runtime Speedup Max. speedup

Figure 3.10: Scalability experiment of a Charlotte Ising model program.

utilization of slow machines in a computation. In particular, we are interested

to see whether the addition of slow machines will affect the overall performance.

Third,we analyze how well the system can integrate machines into an ongoing

computation, and how efficiently failures can be masked. The results are graphed

showing the total time, the achieved speedup, and the number of equivalent perfect

machines (which represents an upper-bound for the speedup).

1. This series of experiment shows the overhead of Charlotte. A sequential Java

program to compute the Ising model ran in 1,186 seconds. The equivalent

87

Charlotte program ran in 1,230 seconds on one machine of profile A (the

manager process and one worker process ran on the same machine). This

corresponds to 96% efficiency. The same program on two machines of pro-

file A (one machine running the manager and one worker, and the second

machine running the second worker) ran in 609 seconds. This represents a

speedup of 1.95 and 97% efficiency compared with the sequential Java pro-

gram. Figure 3.10 shows the performance for 1 through 10 workers. Given

the high level programming model and a need for optimization, we were sat-

isfied that the program achieved 93% efficiency with 10 machines. This is

competitive with other systems that do not provide load balancing and fault

masking like Charlotte.

2. In the second set of experiments, we evaluate how efficiently Charlotte can

handle an environment composed of some fast and some slow machines. This

models a “real” setting on the Web. We used machines of profile A and

profile B. We performed six tests. In all tests, the number of actual ma-

chines varied from five to ten, although the effective number of fully available

machines was always five. For example, we ran a test with three machines

that were available 100% of the time (profile A) and four machines that were

available 50% of the time (profile B). As Figure 3.11 indicates, Charlotte’s

load balancing technique was effective in this environment.

88

238
240
242
244
246
248
250
252
254
256
258

5A&0B 4A&2B 3A&4B 2A&6B 1A&8B 0A&10B

Number of Workers

R
un

tim
e

(s
ec

s.
)

0

1

2

3

4

5

6

S
pe

ed
up

Runtime Speedup Max. speedup

Figure 3.11: Load balancing experiment of a Charlotte Ising model program.

89

3. In the final experiment, we measure how well Charlotte handles failures and

how effectively a machine can be integrated into a running computation. In

this test, we ran the program on seven machines—three machines of profile A

(one of these running the manager and a worker), and one each of profiles C,

D, E, and F. This corresponds to the following scenario: started with five

machines; after 100 seconds, one worker was crashed and instantly a new

worker started; after another 100 seconds, two workers were crashed and

instantly two new workers started. At any time during the computation the

effective number of fully available machines was five. This program completed

in 275 seconds, as opposed to 248 seconds in a perfect setting, i.e. using

five machines of profile F. This indicates that Charlotte performs well in a

dynamic situation.

Other applications, such as matrix multiplication and Mandelbrot, have been

parallelized using Charlotte. The work described in [35] contains further perfor-

mance results for Charlotte. It also includes an analysis of the overhead Charlotte

imposes, and proposes certain optimizations.

3.9 Related Work

PVM [57] and MPI [28] are representatives of message passing systems. They

provide portability and good performance, but they are low level. Systems such

90

as CARMI [53] and [33] augment PVM’s functionality with resource management

services. However, they are limited to local area networks: there is no support for

dynamic load-balancing and fault masking, they require the program to reside at

each site (or a shared file system), and the user or the system needs an account on

each machine participating in the computation. These factors severely limit their

use as a metacomputing framework for the Web.

Another class of systems for distributed computing focuses on providing dis-

tributed shared memory across loosely-coupled machines. IVY [47] and Tread-

Marks [41] are representatives of such systems. Cilk [11] is a comprehensive system

providing resource management and fault-tolerance in addition to DSM. However,

it makes similar assumptions about the file system and user privileges as mes-

sage passing systems, which limits its applicability to the Web. In addition, DSM

systems, in general, do not work on heterogeneous environments.

Recently, with the introduction of Java, another class of systems is becom-

ing available. This class includes: JPVM [24], Java-MPI [59], ATLAS [3], Java-

Party [52], and ParaWeb [12]. Similarly, there have been proposals for Web-enabled

virtual machines as a basis for a High Performance Computing and Communica-

tions (HPCC) platform [27], to use Java in a SPMD programming model [31], and

to extend Java with global pointers and remote service request mechanisms from

the Nexus communication library [26].

91

Both JPVM and Java-MPI provide a message passing interface to Java stand-

alone applications, but not applets. ATLAS programs are distributed and load-

balanced using Cilk’s work-stealing scheduling. It requires daemon processes as

compute servers and relies on native code, destroying the secure program execution

guarantees. JavaParty mainly targets clusters of workstations. It enhances Java

with remote objects and uses a preprocessor to generate data distribution and

data migration code. JavaParty requires a running Java process as a runtime

environment, creating an administrative burden. ParaWeb allows threads to run

remotely and gives the abstraction of a single shared memory. Essentially, it is a

parallel implementation of the Java Virtual Machine, but requires modifications.

Unfortunately, all these projects fail to take advantage of Web browsers’ ability

to download and execute applets in a secure fashion. This is a crucial require-

ment if a system is to entice users to donate their resources. Recently, several

projects have appeared which provide a parallel computing environment for the

Web without sacrificing the necessary security guarantees. Javelin [14] provides

brokering functionalities for computational resources and a layer supporting the

implementation of parallel models in Java. Bayanihan [54] proposes a volunteer-

based approach and uses a technique similar to eager scheduling to assign jobs to

volunteers. Ninflet [58] supports RPC-based computing allowing clients to invoke

remote methods from various languages such as Fortran, C, and Java; it provides

92

its own security manager to address security concerns.

3.10 Conclusion

Charlotte supports some of the key functionality critical for harnessing the Web

as a metacomputing resource for parallel computations. It provides programmers

with a convenient and stable virtual machine interface to the heterogeneous and

unpredictable execution environment. The programming model is based on shared

memory and employs the emerging Java standard enhanced with a few classes for

expressing parallelism. Thus, heterogeneity and security are provided to the extent

supported in Java. Furthermore, the runtime environment realizes automatic load

balancing and fault tolerance, both critical to the effective utilization of the Web.

93

Chapter 4

Network Computing with Java

Applets

4.1 Introduction

The Web has the potential of integrating remote and heterogeneous computers

into a single global computing resource for parallel and collaborative work. While

parallel computing on workstation clusters is common practice with systems such as

PVM [57] and MPI [28], this is not the case for computing over the Web. Similarly,

while collaborative work on Intranets is supported by systems like CORBA [56] and

DCOM [49], this does not hold true for the Web. Some of the obstacles common to

both Web-based parallel computing and collaborative work are the heterogeneity

of the participating systems, difficulties in administering distributed applications,

94

security concerns of users, and matching of applications and users.

The Java programming language in combination with Java-capable browsers

have successfully addressed some of these problems. Java’s platform independence

solves the problem of heterogeneity. The growing number of Java capable browsers

able to seamlessly load applets from remote sites reduces administration difficul-

ties. The applet security model, which in most parts enables browsers to execute

untrusted applets in a trusted environment, alleviates some of the users’ security

concerns. It is because of these reasons that Java applets are a good candidate

for building Web-based systems, and browsers the perfect candidate to seamlessly

bring distributed computing to every-day users.

In this Chapter, we focus on applications composed of Java applets and de-

signed to run within Web browsers. As a result of limitations put on applets, the

architectures of many existing systems have the following characteristics: (1) a

stand-alone Java application running on the same host as an HTTP server; and

(2) users anywhere on the Internet joining a stand-alone application by loading an

applet using an a priori known URL and executing it within a browser. In an ideal

situation, (1) the stand-alone Java application should not be tied to an external

HTTP server and should be allowed to execute anywhere on a network; and (2)

users should not be required to have a priori knowledge of the URL and should

be able to locate these applications in a seamless fashion via browsers. Knitting-

95

Factory is an infrastructure for building such systems. It provides two integrated

services:

• KF Directory Service, a distributed name service to assist users in finding

networked applications on unknown hosts. KF Directory Service makes it

possible for the user to find such applications on the Web by performing a

lookup at any site offering a KF Directory Service. Since we are mostly con-

cerned with applications which register and deregister frequently, the chal-

lenge is to provide this functionality in a decentralized fashion, but more

importantly, such that it works with Web browsers.

• KF Class Server , an embedded class server to eliminate the need of external

HTTP servers. A user who may wish to initiate a distributed application may

not have access to a host running an HTTP server and it may be inconvenient

or impossible to install such a server on the local host. KF Class Server

provides a light-weight solution to allow users to initiate a distributed effort

on any host.

The rest of this Chapter is organized as follows. Next, I give an overview of

related projects to highlight how KnittingFactory can assist in overcoming some

difficulties associated with applets. Section 4.3 describes the philosophy and de-

sign of KnittingFactory. Sections 4.4 and 4.5 describe the implementation and

sample applications of the respective services. A more detailed description of the

96

implementation can be found in [5]. I will close with concluding remarks on this

project in Section 4.6.

4.2 Related Work

There are various areas which aim to take advantage of Java applets. In this Sec-

tion, I will focus on two areas, parallel computing and collaborative applications on

the Web. I will present a few projects in these areas and point out the common-

alities of these projects. I will then extract common shortcomings and argue that

there is a need for infrastructure support to overcome these shortcomings.

4.2.1 Parallel Computing

In Chapter 3, I described Charlotte, a parallel computing environment for the

Web. In Section 3.9, I presented several related projects, pointing out that most of

these fail to provide the desired security guarantees. Besides Charlotte [7], other

projects which address users’ security concerns include Javelin [14], Bayanihan [54],

and Ninflet [58].

These systems were specifically designed for parallel programming over the

Web. By leveraging the ability of browsers to download and execute remote ap-

plets, they provide the means for any user, anywhere on the Web, using any Java-

capable browser, to participate in a parallel computation. The essence of the

97

server

Java
application

HTTP server

code &
communication

code &
communication

code &
communication

code &
communication

Browser
& Applet

Browser
& Applet

Browser
& Applet

Browser
& Applet

Figure 4.1: Architecture of typical Web-based parallel/collaborative systems.

architecture of systems such as Charlotte and Javelin is shown in Figure 4.1. A

single host, the server in the diagram, runs a Java stand-alone application and an

HTTP server. Other hosts load applets which reside on the server and execute

them within a browser’s secure environment.

There are two features common to the design of such systems. First, they

require a host running an HTTP server in addition to a stand-alone Java applica-

tion. In Charlotte, for example, the stand-alone application is called the manager

and there is one manager per parallel program; in Javelin, it is called the broker

and a broker may serve multiple programs at a time. The role of the stand-alone

application is to distribute work among browsers and to handle traffic related to

maintaining shared data. The second commonality is that users need to have a

priori knowledge of the host running the stand-alone application.

98

4.2.2 Collaborative Applications

The second category of projects focuses on software infrastructures for collabo-

rative applications on the Web. Examples of such applications are distributed

whiteboards, calendars, and editors where multiple users collaborate towards one

goal. High-level software systems which support collaborative Java applications in-

clude the Caltech Infosphere project [15], Jada/PageSpace [16], Java Collaborator

Toolset [46], JavaSpaces [29], and TANGO [8].

Jada and JavaSpaces integrate the Linda concept with Java. Where Jada uses

a Linda-like tuple model, JavaSpaces utilizes object hierarchies for tuple matching.

PageSpace builds higher-level functionalities on top of Jada. Infosphere proposes

channel-coupled agents to build flexible ways of collaborative interactions. These

systems utilize Java for building stand-alone applications and do not take advan-

tage of browsers. For example, while users interact with a PageSpace application

in a browser, the actual collaboration is provided by a set of processes which must

be started beforehand.

TANGO provides functionalities such as session management, user authentica-

tion, event logging, and communication between collaborative users. The main two

elements of TANGO’s architecture are a local daemon and a central server. The

local daemon is implemented as a Netscape plug-in to circumvent restrictions put

on applets, and hence, breaks the security guarantees. Java Collaborator Toolset

99

provides a replacement for Java’s standard Abstract Window Toolkit (AWT). The

replacement package propagates AWT events to all collaborating agents.

While the functionality of these parallel computing and collaborative systems

transcends KnittingFactory’s goals, KnittingFactory can provide a flexible infras-

tructure for them. First, KF Directory Service can provide the mechanism for

users’ browsers to search the Web for work. And second, KF Class Server can be

used to run initiators on machines other than a common HTTP server machine.

4.3 Design

The design of KnittingFactory has the following goals:

• Ease of use: KnittingFactory should work with standard browsers and com-

ply to Java standards. In particular, users should not be burdened with

additional administrative efforts such as locally installing software packages.

• Secure environment: The system security should not be jeopardized. This

means that both native code and browser plug-ins should be avoided.

• Scalability: Since KnittingFactory targets computing over the World Wide

Web, scalability is an important consideration.

100

parallel
programming

env.

collaborative
system

application/
applet

Java Virtual Machine

KnittingFactory

application/
applet

application/
applet

Figure 4.2: Layered design of KnittingFactory.

To take full advantage of today’s technology, parts of the application designed

to execute on remote machines are generally implemented as applets. The code to

execute on a user’s local machine is implemented as a stand-alone Java application

which is not under scrutiny of the applet security model. For the rest of this

Chapter, I will call the combination of a stand-alone application and applets a

distributed computation, a particular invocation of this a session, an invocation of

the stand-alone application an initiator, and applets belonging to the same session

partners. This scenario is the setting for KnittingFactory.

While many of the systems surveyed in the previous Section provide high-

level functionality to programmers and users, KnittingFactory is concerned with

providing an infrastructure for such systems. Figure 4.2 shows the layered design

101

of KnittingFactory. In Section 4.5, I will show how it can be used to support

parallel programming environments; as an example, we will extend Charlotte’s

capabilities.

The design of KnittingFactory’s services, KF Directory Service and KF Class

Server , is outlined next.

4.3.1 Registration and Lookup

Distributed applications are generally easier to build and use when a lookup- or

directory-service is available. While there exist many classical solutions for this

(for example, CORBA name servers) our focus is to provide a light-weight solution

for the Web. In particular, KF Directory Service has the following goals:

• Allow lookups from within a browser.

• Use the Web-infrastructure as much as possible.

• Avoid new daemon processes.

• Accommodate highly dynamic registration and deregistration of entries to

support short-lived sessions.

There is a popular directory service called Lightweight Directory Access Pro-

tocol (LDAP) [62]. It specifies both a global data model and a protocol for clients

102

and servers to access and maintain this directory. The servers perform search re-

quests on clients’ behalf. Our goal is to accommodate a large number of client

requests for highly dynamic directory entries. The dynamics of the directories

makes replication of information among distributed directory servers unattractive

due to frequent invalidation. But without replication, the servers would have to

perform considerable work to service the requests for possibly a large number of

clients. Therefore, it is not feasible to perform the search within the servers, and

consequently, LDAP-based directories are ill-suited for this purpose. We chose to

pursue a solution which executes the search at the client side, within a client’s

browser.

Using dynamically loaded applets to realize a directory service is not a feasible

approach. Consider an applet sent from host A and executing within a browser

on host B. The applet can establish a network connection only to host A. If the

user at B is interested in performing a directory service lookup, it is the case that

(1) host A acts as a single central directory service for this and all other sites, or

(2) host A performs the search on behalf of B, or (3) the directory information is

replicated and synchronized on multiple sites—neither option is acceptable.

In KnittingFactory, we build upon existing HTTP servers to act as directory

servers. Such a directory:

• stores information about sessions looking for prospective partners (such as

103

the URL of the initiator, comments, etc.), and

• maintains a list of other KF Directory Services, which can be interpreted as

the edges of a directed graph of KF Directory Services. Adding and removing

both sessions and directories can be achieved using standard protocols (HTTP

Post and CGI scripts).

The technique used in KnittingFactory to support lookup operations is unique.

A lookup can be initiated at any server which offers a KF Directory Service. By

including a JavaScript program along with a session and directory list in a single

HTML page retrieved from such a server, a browser can inspect this information

and, if a matching session is found, proceed to the respective URL; otherwise, it

can use the directory list to search recursively at another site. By passing along

state information as part of the URL of the next directory, search strategies like

breadth-first search can be implemented. Breadth-first search is preferable search

method to find sessions on nearby hosts first, assuming that nearby applications

exhibit better communication efficiency than more remote ones.

The combination of these techniques allows the search to be performed in the

client’s browser, putting only minimal strain on directory servers. In Section 4.4,

I will discuss the KF Directory Service in detail.

104

4.3.2 Arbitrary Origin of Applets

In a typical distributed Java application, applets are loaded from an HTTP server

and connect to a stand-alone application, the initiator (see Figure 4.1). Among

others, this is the case for applications written in Charlotte, Javelin, and many

collaborative applications. The Java security model dictates that the initiator has

to run on the same host as the HTTP server. Ideally, however, initiators should

be able to execute anywhere on a network.

KnittingFactory addresses this problem by providing a light-weight HTTP

server. KF Class Server implements the essential functionalities needed to serve

applets, and is designed to be embedded into any Java application. As a result,

it is the application itself which dynamically serves classes to browsers upon re-

quest. Although quite simple, this makes it possible for initiators to run on any

host connected to the network. The details of KF Class Server will be discussed

in Section 4.5.

4.4 Directory Service

KF Directory Service is implemented by a set of HTTP servers acting as directory

servers, and a single HTML file at each server. Such a file contains a table of

directory entries and a JavaScript program. While every HTML file contains the

same JavaScript program, their directory entries may differ. A directory entry is

105

Figure 4.3: The main page of a KnittingFactory registry.

a tuple containing a string (i.e., the session description), a URL address (i.e., the

initiator of the session), and optional fields for category, password, and comments.

The category field is used to distinguish between entries representing sessions and

other directory servers.

In the remainder of this Section, I will first describe registration details, and

then discuss how lookups are performed.

106

4.4.1 Registration

Adding and removing an entry is performed by processes sending HTTP Post

messages to HTTP servers, resulting in the execution of appropriate cgi-bin scripts

located at each server. Each registry has a total of four cgi-bin scripts written in

Perl which update the local HTML file. See Figure 4.3 for a sample HTML file

containing three applications and two neighboring directories. The scripts used to

update such a file are:

Adding a registry

newurl: The URL of the HTML page of a new registry. This adds a link

pointing from the registry where this form is submitted to the given

URL.

password: to secure consistency of the registry (optional).

Removing a registry

remurl Remove the given URL from the list of registries on this registry.

password: to secure consistency of the registry (optional).

Registering an application

host Name of the host where the application is running.

107

kfport The port number at which this application can be contacted by a

Web browser to obtain an applet.

description An arbitrary description of this application (optional).

Deregistering an application

host Name of the host where the application is running.

kfport The port number, as used to register the application.

KnittingFactory provides a set of HTML pages to serve as a simple user inter-

face to these scripts. These allow users to manually register and deregister applica-

tions and registries. Alternatively, applications can use two methods, register()

and deregister() to register and deregister themselves at one or more registries.

These methods, along with the class which implements them, will be described in

Section 4.5.

4.4.2 Lookup

A lookup operation consists of loading an initial HTML page and executing the

embedded JavaScript program with the request as a parameter. This JavaScript

program analyzes the entries in its own page. If no match is found, a new URL is

constructed and the browser is instructed to load the new address. The new URL

contains the address of another directory server augmented with state information

108

containing a list of hosts visited so far, and a list of hosts to visit next which is

included in the tag part of the new URL. This part of the URL is usually used

to let a browser navigate to a certain anchor in an HTML document. Since the

HTML files at the registries do not contain any anchors, the browser just ignores

the tag; but this information is still available to the JavaScript program.

The tag is organized as follows:

TAG ::= "search" + TODO-LIST + SEEN-LIST

TODO-LIST ::= ε |

TODO-LIST-P

TOTO-LIST-P ::= URL |

URL#TODO-LIST-P

SEEN-LIST ::= ε |

SEEN-LIST-P

SEEN-LIST-P ::= URL |

URL#SEEN-LIST-P

where ε is the empty string and URL represents any HTTP address.

The script first checks if the tag actually starts with the string search. If this is

not the case, it stops immediately. If it does, it first examines the links on this page

to find out if any applications are registered with this registry. An application is

distinguished from a registry by their relative position on the page. If applications

109

are found, one is randomly selected and the browser is directed to this URL. It is

possible to extend this to include additional parameters in the selection process,

e.g., based on a best fit or best price principle.

If no matching application is found on a given page, the script will proceed with

a breadth-first search. First, the URL of this page is appended to the seen-list

of the tag string. Next, all registries contained in this page are appended to the

todo-list. The first element of the todo-list is extracted used as the address of the

next page to visit. To this address, the #search tag, the new todo- and seen-lists

are appended to form the new URL. Finally, the browser is instructed to go to

this newly constructed URL. Since this URL represents some other registry, it also

contains the same script which will proceed with the search using the information

obtained from the previous page and included in the tag. This process ends if

either an application is located or no new registries can be found, in which case a

suitable message is presented to the user or the calling application.

In summary, this approach allows the search to be performed by a JavaScript

program without breaking the security restrictions imposed by Web browsers. Un-

der the tainting [25] security model, a JavaScript program is not allowed to inspect

pages coming from another site than itself. Once the JavaScript program finds an

entry matching the request, the browser is instructed to follow the corresponding

link. In this case, it will download an HTML page with an embedded applet which

110

constitutes a partner of a distributed computation.

Note that this is not a search engine: unlike centralized search engines, the

KF Directory Service is truly decentralized. The only services required from the

HTTP server are sending the HTML file and running the cgi-bin scripts to add

and remove entries. The actual search takes place within users’ browsers.

4.4.3 Directory Service and Java RMI

While KF Directory Service was initially designed to work within browsers, in this

Section, we will consider an example of how its services can be used in other con-

texts. In particular, we will look at the client/server architecture of Java Remote

Method Invocation.

In Java RMI terminology, a registry is a remote object which provides basic

name server functionality. The rmiregistry provided in JDK 1.1 is a shell script

which invokes RegistryImpl, an implementation of such a registry. Two methods

provided by the registry are of special interest to us: bind() and lookup() for

registering and locating a server object, respectively. The existing RMI registry

successfully binds a server object only if it is local to its machine. In the absence of

a network-wide directory service, this means either that client applications must

have a priori knowledge of the host running each server they might contact, or

that all servers must run on a single well-known host.

111

KnittingFactory can overcome this restriction by providing a directory service

to RMI registries. This requires the implementation of a wrapper class around

RegistryImpl. In addition to passing bind operations to the RMI registry, the

wrapper class makes a corresponding entry in a KF Directory Service under a

specified service name. The lookup operation uses KF Directory Service to first

search the network for the host running an RMI registry with the appropriate

entry, and then contacts that registry for a server’s remote reference. Thus, with

the help of KF Directory Service, RMI servers can run and execute anywhere on

the network, and clients can transparently get servers’ remote references without

having to know which hosts to search. The necessary wrapper classes will be

realized in future versions of the system.

4.5 Class Server

KF Class Server provides the core functionalities needed to allow initiators to

execute anywhere on a network, independent of whether a local HTTP is available

or not. In particular, it serves an initial HTML page containing an applet tag,

which implicitly results in additional requests for the applet classes which are

served as needed.

112

4.5.1 Implementation

KF Class Server is implemented by the KF Manager class. Any stand-alone appli-

cation, such as an initiator, can instantiate a KF Manager object to use its services.

KF Manager’s constructor takes the name of the applet class (i.e., partner) to be

included in the initial HTML page and, optionally, the port number at which the

application is expecting partners to contact it. KF Manager itself creates a server

socket on which it expects browsers to connect it and download the applet. Since

our goal is only to serve one particular applet to the browser, an HTML file con-

taining the applet name and optional parameters is generated and sent back to the

browser. To initiate and execute the applet, the browser will connect again to the

KF Manager and request the applet. A request for a Java applet class results in

asking the underlying Java Virtual Machine for the requested class. The class file

is searched along the CLASSPATH environment variable and the byte-code is sent to

the requesting browser. This process is repeated for every requested class.

Although any applet can be used this way, KnittingFactory provides the con-

venience class KF Applet which extends Java’s Applet class. This class provides a

method getPort() which returns the port number where the application expects

the applet to contact it. This means the actual applet would be derived from

KF Applet instead of Applet; it has to call the init() function of its parent class

to allow correct initialization.

113

The integration with the directory service of KnittingFactory is achieved by

two methods, register() and deregister(), both methods of KF Manager. Both

methods take one or more registry URLs as parameters and register or deregister

the application at the respective registries.1 The method register() automati-

cally inserts the port number at which applets can be requested in the registration

message. Thereby, a browser which has found an application via the searcher script

will contact the application at the specified port and download the applet without

further manual intervention.

KnittingFactory also provides an implementation of KF Manager which inte-

grates KF Directory Service to automatically register and deregister at one of

more registries. In what follows, this implementation is used as an underlying

layer for Charlotte.

4.5.2 KnittingFactory and Charlotte

In Chapter 3, I described Charlotte, a parallel computing environment for the Web.

The two main components in a Charlotte program are: a manager (i.e., initiator)

and one or more workers (i.e., partners). The manager process creates an entry in

a well-known HTML page at initialization. Users can load and execute the worker

code by directing their browsers to this URL.
1register() also takes an optional description parameter.

114

Charlotte requires that a manager runs on a host with an HTTP server to

enable communication between a manager and the workers. With only six lines of

code, KnittingFactory permits such a manager to be started on any host and to

register itself with a set of KF Directory Services , allowing clients to find Charlotte

applications easily. If only one machine with an HTTP server is available (a

common setup), multiple Charlotte managers no longer need to run on this single

machine, but they can be started on arbitrary machines.

4.6 Conclusions

In this Chapter, I have presented KnittingFactory, an infrastructure which sup-

ports building Web-based parallel and collaborative applications. Within the con-

text of current research efforts, I pointed out a set of problems and challenges

which application programmers face when using Java in combination with Web

browsers and their ability to load and execute untrusted applets in a secure fash-

ion. I described the two services provided by KnittingFactory addressing these

issues: KF Directory Service which makes it possible for users with Web browsers

to find a distributed session; and KF Class Server which allows users to start a

distributed session on any host. I also argued how parallel programming and col-

laborative systems can benefit from using KnittingFactory as an underlying layer.

This was demonstrated by utilizing KnittingFactory to extend Charlotte, a parallel

115

programming environment.

116

Chapter 5

Conclusions

The Web represents a challenging environment for distributed computing because

of the large number of heterogenous machines with different speeds which crash-fail

and join arbitrarily, and networks with different performance characteristics which

partition and merge. I have demonstrated that fault tolerance, fault masking, and

scalability play an important role in Web-based systems. I argued that these issues

appear in many areas and proposed new solutions.

I presented a decentralized design for allocating geographically dispersed, repli-

cated Web servers and argued that this approach scales well. It uses pricing strate-

gies which provide incentives to clients to influence the way they make dispatching

decisions. An adaptive algorithm updates prices to deal with dynamic changes.

Performance results based on a prototype were presented which validate its func-

117

tionality.

I described a prototype system which allows programmers to write parallel

applications in Java and allows anyone with a Java-capable browser to participate

in a parallel computation. It comprises of a virtual machine model which isolates

the program from the execution environment, and a runtime system which realizes

this model on the Web. Two integrated techniques, eager scheduling and TIES,

provide load balancing and fault masking transparently.

I presented an infrastructure for building applications composed of Java applets

and designed to run within applets. It provides a distributed name service to

assist users in finding networked applications on unknown hosts. Furthermore, its

embedded class server eliminates the need for external HTTP servers.

118

Bibliography

[1] D. Andresen, T. Yang, V. Holmedahl, and O. H. Ibarra. SWEB: Towards a

Scalable World Wide Web Server on Multicomputers. In Proceedings of the

10th International Parallel Processing Symposium (IPPS), 1996.

[2] Y. Aumann, Z. M. Kedem, K. Palem, and M. Rabin. Highly Efficient Asyn-

chronous Execution of Large-Grained Parallel Programs. In Proceedings of the

34th IEEE Annual Symposium on Foundations of Computer Science, 1993.

[3] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer. ATLAS: An In-

frastructure for Global Computing. In Proceedings of the 7th ACM SIGOPS

European Workshop: Systems Support for Worldwide Applications, 1996.

[4] A. Baratloo, P. Dasgupta, and Z. M. Kedem. Calypso: A Novel Software

System for Fault-Tolerant Parallel Processing on Distributed Platforms. In

Proceedings of the IEEE International Symposium on High-Performance Dis-

tributed Computing, 1995.

119

[5] A. Baratloo, M. Karaul, H. Karl, and Z. M. Kedem. KnittingFactory: An

Infrastructure for Distributed Web Applications. Technical Report TR1997-

748, Department of Computer Science, New York University, November 1997.

[6] A. Baratloo, M. Karaul, H. Karl, and Z. M. Kedem. Network Computing with

Java Applets. To appear in Concurrency: Practice and Experience, 1998.

[7] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff. Charlotte: Meta-

computing on the Web. In Proceedings of the 9th International Conference on

Parallel and Distributed Computing Systems, 1996.

[8] L. Beca, G. Cheng, G. C. Fox, T. Jurga, K. Olszewski, M. Podgorny, P. Sokol-

wski, and K. Walczak. Web Technologies for Collaborative Visualization and

Simulation. Technical Report SCCS-786, Northeast Parallel Architectures

Center, January 1997.

[9] T. Berners-Lee, R. Fielding, and H. Nielsen. RFC 1945: Hypertext Transfer

Protocol – HTTP/1.0, May 1996.

[10] N. Biggs. Interaction models: Course given at Royal Hollaway College, Uni-

versity of London. Cambridge University Press, 1977.

[11] R. D. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, A. Shaw, and

Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. In Proceedings

of the Symposium on Principals and Practice of Parallel Programming, 1995.

120

[12] T. Brecht, H. Sandhu, M. Shan, and J. Talbot. ParaWeb: Towards World-

Wide Supercomputing. In Proceedings of the 7th ACM SIGOPS European

Workshop, 1996.

[13] T. Brisco. RFC 1794: DNS Support for Load Balancing, April 1995.

[14] P. Cappello, B. Christiansen, M. F. Ionescu, M. O. Neary, K. E. Schauser, and

D. Wu. Javelin: Internet-Based Parallel Computing Using Java. Concurrency:

Practice and Experience, 1997.

[15] K. M. Chandy, A. Rifkin, P. A. G. Sivilotti, J. Mandelson, M. Richardson,

W. Tanaka, and L. Weisman. A World-Wide Distributed System Using Java

and the Internet. In Proceedings of the IEEE International Symposium on

High Performance Distributed Computing, 1996.

[16] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche. Redesign-

ing the Web: From Passive Pages to Coordinated Agents in PageSpaces. In

Proceedings of the 3rd International Symposium on Autonomous Decentralized

Systems, 1997.

[17] K. C. Claffy, H. W. Braun, and G. C. Polyzos. Tracking Long-term Growth

of the NSFNET. Communications of the ACM, 37(8), August 1994.

[18] IBM Corporation. Interactive Network Dispatcher User’s Guide, 1997. Avail-

able at http://www.ics. raleigh.ibm.com/netdispatch/ND2MST.HTM.

121

[19] O. P. Damani, P. E. Chung, Y. Huang, C. Kintala, and Y. M. Wang. One-IP:

Techniques for Hosting a Service on a Cluster of Machines. In Proceedings of

the Sixth International World Wide Web Conference, 1997.

[20] P. Dasgupta, Z. M. Kedem, and M. Rabin. Parallel Processing on Networks of

Workstations: A Fault-Tolerant, High Performance Approach. In Proceedings

of 15th International Conference on Distributed Computing Systems, 1995.

[21] D. Dean, E. Felten, and D. Wallach. Java Security: From HotJava to Netscape

and Beyond. In Proceedings of the IEEE Symposium on Security and Privacy,

1996.

[22] D. Dias, W. Kish, R. Mukherjee, and R. Tewari. A Scalable and Highly

Available Server. In Digest of Papers. COMPCON ‘96. Technologies for the

Information Superhighway, 1996.

[23] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar. A Novel Server

Selection Technique for Improving the Response Time of a Replicated Service.

In Proceedings of the IEEE INFOCOMM, 1998.

[24] A. Ferrari. JPVM – The Java Parallel Virtual Machine. http://www.cs.

virginia.edu/˜ajf2j/jpvm.html.

[25] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly & Associates, Inc.,

1997.

122

[26] I. Foster and S. Tuecke. Enabling Technologies for Web-Based Ubiquitous

Supercomputing. In Proceedings of the 5th IEEE Symposium on High Perfor-

mance Distributed Computing, 1996.

[27] G. Fox and W. Furmanski. Towards Web/Java Based High Perfomance Dis-

tributed Computing – An Evolving Virtual Machine. In Proceedings of the

Symposium on High Performance Distributed Computing, 1996.

[28] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Program-

ming with the Message-Passing-Interface. MIT Press, 1994.

[29] R. Guth. Sun’s JavaSpaces is the Foundation for Future Distributed Systems,

1997. Available at http://www.javaworld.com/javaworld/jw-09-1997/jw-09-

idgns.javaspaces.html.

[30] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,

R. N. Sidebotham, and M. J. West. Scale and Performance in a Distributed

File System. ACM Transactions on Computer Systems, 6(1), February 1988.

[31] S. Hummel, T. Ngo, and H. Srinivasan. SPMD Programming in Java. Con-

currency: Practice and Experience, 1997.

[32] Matrix Information and Directory Services Inc. MIDS Internet Weather Re-

port. Available at http://www3.mids.org/weather.

123

[33] J. Ju and Y. Wang. Scheduling PVM Tasks. Operating Systems Review, July

1996.

[34] M. Karaul, Y. A. Korilis, and A. Orda. WebSeAl: Web Server Allocation.

Technical Report TR1997-752, Department of Computer Science, New York

University, December 1997.

[35] H. Karl. Bridging the Gap between Distributed Shared Memory and Message

Passing. To appear in Concurrency: Practice and Experience, 1998.

[36] E. D. Katz, M. Butler, and R. McGrath. A Scalable HTTP Server: The NCSA

Prototype. Computer Networks and ISDN Systems, 27(2), 1994.

[37] Z. M. Kedem and K. Palem. Transformations for the Automatic Derivation of

Resilient Parallel Programs. In Proceedings of the IEEE Workshop on Fault-

Tolerant Parallel and Distributed Systems, 1992.

[38] Z. M. Kedem, K. Palem, M. Rabin, and A. Raghunathan. Efficient program

transformations for resilient parallel computation via randomization. In Pro-

ceedings of the 24th ACM Symposium on Theory of Computing, 1992.

[39] Z. M. Kedem, K. Palem, A. Raghunathan, and P. Spirakis. Combining Tenta-

tive and Definitive Algorithms for Very Fast Dependeble Parallel Computing.

In Proceedings of the 23rd ACM Symposium on Theory of Computing, 1991.

124

[40] Z. M. Kedem, K. Palem, and P. Spirakis. Efficient Robust Parallel Computa-

tions. In Proceedings of the 22nd ACM Symposium on Theory of Computing,

1990.

[41] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel. TreadMarks: Dis-

tributed Shared Memory on Standard Workstations and Operating Systems.

In Proceedings of the Winter USENIX Conference, 1991.

[42] Y. A. Korilis, A. A. Lazar, and A. Orda. Architecting Noncooperative Net-

works. IEEE Journal on Selected Areas in Communications, 13(7), September

1995.

[43] Y. A. Korilis, T. A. Varvarigou, and S. R. Ahuja. Pricing Mechanisms for Dis-

tributed Resource Management. Technical Memorandum BL0112570-120396-

TM3, Bell Laboratories, Lucent Technologies, December 1996.

[44] Y. A. Korilis, T. A. Varvarigou, and S. R. Ahuja. Optimal Pricing Strategies in

Noncooperative Networks. In Proceedings of the 5th International Conference

on Telecommunication Systems: Modeling and Analysis, 1997.

[45] Y. A. Korilis, T. A. Varvarigou, and S. R. Ahuja. Pricing Noncoopera-

tive Networks, June 1997. Submitted to IEEE/ACM Transactions on Net-

working. Available at http://www.multimedia.bell-labs.com/people/yannisk/

price.html.

125

[46] B. Kvande. The Java Collaborator Toolset, a Collaborator Platform for the

Java Environment. Master’s thesis, Department of Computer Science, Old

Dominion University, August 1996.

[47] K. Li. IVY: A Shared Virtual Memory System for Parallel Computing. In

Proceedings of the International Conference on Parallel Processing, 1988.

[48] D. Mosberger. Memory Consistency Models. Technical Report TR92/11,

University of Arizona, 1992.

[49] Brown N. and C. Kindell. Distributed Component Object Model Protocol –

DCOM/1.0, 1996.

[50] http://www.ncsa.uiuc.edu.

[51] http://www.netscape.com.

[52] M. Philippsen and M. Zenger. JavaParty – Transparent Remote Objects in

Java. In Proceeding of the ACM 1997 PPoPP Workshop on Java for Science

and Engineering Computation, 1997.

[53] J. Pruyne and M. Livny. Parallel Processing on Dynamic Resources with

CARMI. In Proceedings of the Workshop on Job Scheduling Strategies for

Parallel Processing, 1995.

[54] L. F. G. Sarmenta, S. Hirano, and S. A. Ward. Towards Bayanihan: Building

126

an Extensible Framework for Volunteer Computing Using Java. In Proceedings

of the ACM 1998 Workshop on Java for High-Performance Network Comput-

ing, 1998.

[55] A. Siegel, K. Birman, and K. Marzullo. Deceit: A Flexible Distributed File

System. In Proceedings of the 1990 Summer USENIX Conference, 1990.

[56] J. Siegel. CORBA Fundementals and Programming. Wiley, 1997.

[57] V. Sunderam, G. Geist, J. Dongarra, and R. Manchek. The PVM Concurrent

Computing System: Evolution, Experiences, and Trends. Parallel Computing,

1994.

[58] H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh, and U. Na-

gashima. Ninflet: A Migratable Parallel Objects Framework using Java. In

Proceedings of the ACM 1998 Workshop on Java for High-Performance Net-

work Computing, 1998.

[59] S. Taylor. Prototype Java-MPI Package. Available at http://cisr.anu.edu.au/

sam/java/java mpi prototype.html.

[60] http://www.top100.com.

[61] http://www.tucows.com.

127

[62] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3).

RFC 2251, December 1997.

[63] C. Yoshikawa, B. Chun, P. Eastham, Vahdat A., T. Anderson, and D. Culler.

Using Smart Clients to Build Scalable Services. In Proceedings of the 1997

USENIX Annual Technical Conference, 1997.

[64] M. Zekauska, W. Sawdon, and B. Bershad. Software Write Detection for a

Distributed Shared Memory. In Proceedings of the Symposium on OSDI, 1994.

128

Metacomputing and Resource Allocation

on the World Wide Web

by

Mehmet Karaul

Advisor: Zvi M. Kedem

The World Wide Web is a challenging environment for distributed computing due

to its sheer size and the heterogeneity and unreliability of machines and networks.

Therefore, scalability, load balancing, and fault masking play an important role for

Web-based systems. In this dissertation, I present novel mechanisms for resource

allocation and parallel computing on the Web addressing these issues.

Large Web sites rely on a set of geographically dispersed replicated servers

among which client requests should be appropriately allocated. I present a scal-

able decentralized design, which pushes the allocation functionality onto the clients.

At its core lies a pricing strategy that provides incentives to clients to control the

dispatching of requests while still allowing clients to take advantage of geographic

proximity. An adaptive algorithm updates prices to deal with dynamic changes.

A prototype system based on this architecture has been implemented and its func-

tionality validated through a series of experiments.

Parallel computing on local area networks is based on a variety of mechanisms

targeting the properties of this environment. However, these mechanisms do not ef-

fectively extend to wide area networks due to issues such as heterogeneity, security,

and administrative boundaries. I present a prototype system which allows appli-

cation programmers to write parallel programs in Java and allows Java-capable

browsers to execute parallel tasks. It comprises a virtual machine model which

isolates the program from the execution environment, and a runtime system real-

izing this machine on the Web. Load balancing and fault masking are transparently

provided by the runtime system.

